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1. Introduction

Motivation
Porous media have been a concern since the 60s; the main challenge has been about how the
connection between the microstructure and the macroscopic properties is formed, and what
the attributes and characteristics are that define their microstructure. In general, this problem
has been already investigated in what is called disordered systems; the crystallites making
up the subject-materials are arranged randomly in space. Examples to other recent studies
done on disordered systems could be found in [13, 37, 29]. Our study, using techniques of
theoretical and computational physics, highlights finding the regularities in stochastic porous
media that can be put together to obtain generated porous media using statistical mechanics
and disordered systems concepts.

Objective and problem definition
The main question of many physics problems applies in this thesis as well; how do the mi-
crostructure’s characteristics affect the macrostructure’s physical quantities. In [24], the
microstructure of a porous medium was given a quantitative characterization through poros-
ity, specific surface, two-point correlation function, local porosity theory (LPT) and others.
The microstructure characteristics were used there after to characterize some porous media
and build models for them, and to assess whether the models fit the experimental sample. In
[3] a laboratory scale multiscale carbonate rock was modeled using a continuum geometrical
modeling technique and transport properties were successfully predicted. A good match was
achieved between the model and the experimental sample. In [31] the same approach was
utilized to model the Fontainebleau sandstone with a side-length 1.5 cm. From what we
have seen in previous work, to create a convenient model, the points we need to answer are
as follows

• What is the right way to segment the contents of the experimental sample, since the
microstructure characteristics are strongly dependent on the gray-scale level chosen to
discriminate between solids and voids [9]?

• Does the current modeling approach suffice for modeling every sandstone? does it
need improvement?

• What are the modeling parameters that we have to tweak in order to control a certain
microstructure characteristic? and how?
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1. Introduction

• Would the transport properties of a model agree with an experimental sample if they
both match qualitatively and quantitatively by their microstructure’s characteristics?

In this thesis I concentrate on modeling one kind of porous media and studying its mi-
crostructure’s characteristics; this porous medium is the sandstone called Bentheimer. I start
in Chapter 2 by defining the microstructure parameters and statistical physics concepts that
I will be using. Then in Chapter 3 I analyze the Bentheimer’s µ-CT (Computerized micro-
tomography) images to evaluate the microstructure characteristics. In Chapter 4 the physics
concepts and computational techniques that I will be using to build the model are discussed.
In Chapter 5 I study the modeling parameters that are discussed in Chapter 4, and try to
understand the tend of these parameters and their effect on the model’s microstructure char-
acteristics. Finally, in Chapter 6, I present the model that I have chosen to be the Bentheimer
model according to what is learned from Chapter 5, and show Lattice Boltzmann simulations’
results that are applied on the experimental sample and the model, and see whether they
agree in transport properties, especially, permeability.
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2. Theoretical introduction

2.1. Porous media
A porous medium or material is a solid that contains an interconnected pores network. The
solid that surrounds these pores is often called "matrix". Porosity is an important attribute
of many materials; it is a measure of the rock’s potential in storing economically important
fluids like oil or water. Some examples of common porous media in our life are rocks, soils,
biological tissues and ceramics. Porosity is also important because it contributes to many
physical properties like density, specific conductance and dielectric constant.

Porosity
Porosity, called often voidage, is the fraction of the pore volume to the total volume. There
are two types of pore spaces. The first type forms a continuous phase within the porous
medium; i.e., allows fluids flow though the porous medium. Those pores are called "in-
terconnected" or "effective" pores. The second type is the opposite, where we find pores
closed to themselves (isolated or non-interconnected). The latter cannot contribute to matter
transport across the porous medium.
Later, we will define porosity in a more elaborated sense according to our mathematical

definition of porous media.

2.2. Mathematical definition of porous media
An n-component porous medium is defined as a compact and singly connected subset S of
Rd, which contains n closed subsets Pi ∈ S so that [24, P. 307]

S = P1 ∪ · · · ∪ Pn, (2.2.1)
0 = Vd(∂Pi), (2.2.2)

for 1 6 i 6 n. S is called sample space, which may represent in general any porous medium,
P represent different phases or components of the sample. Such as different materials in a
rock. The symbol Vd (G) denotes the d-dimensional volume of a set G ⊂ R, which we define
as follows [24, P. 308]

Vd (G) =
ˆ
χG (~r ) dd~r, (2.2.3)

where ~r is a d-dimensional vector, and dd~r is the d-dimensional Lebesgue volume measure. In
Eq. (2.2.3), the function χG(~r) is called the characteristic function of the sample. It indicates

3



2. Theoretical introduction

whether the point referred to by the vector ~r is an element of G [24, P. 308], i.e.,

χG(~r ) =

1 for ~r ∈ G
0 for ~r /∈ G.

(2.2.4)

The symbol (or operator) ∂ before a volume element denotes the boundaries of the volume
element, so we mean with ∂Pi the boundary of the component i in the porous medium, so
if the system is 3-dimensional, ∂Pi would give the surface that surrounds the component i.
The different components or phases of the sample may consist of fluid phases and solid

phases. It is convenient to point to the solid phases collectively as a matrix space M, and
other phases are denoted as pore space P. With this convention we may redefine the sample
as the union of the matrix and pore phases S = M ∪ P. We define also the intersection
between the matrix phase and the pore phase as the surface boundary between the two
phases P ∩M = ∂P = ∂M [24, P. 310].

2.3. Stochastic geometry implication
The geometry of porous media appears usually to be random or to have random characteris-
tics, this suggests the use of probabilistic methods for modeling. The idealization underlying
the use of statistical methods is that the geometry of the porous medium is a realization
drawn at random from an ensemble of possible geometries. This idealization involves dis-
cussing ensembles rather than individual geometries. It assumes that there exists some form
of recognizable statistical regularity in the fluctuations and heterogeneities of the microstruc-
ture. This idealization is modeled after statistical mechanics where the microstructure cor-
responds to a full specification of the positions and momenta of the particles in a fluid while
the regularities are contained in the equation of state or thermodynamic potentials. These
regularities of the porous media can be described by a suitable probability distribution on the
space of all geometries. The merit of the stochastic description lies in the fact that it defines
the necessary framework to define typical or average properties of porous media [24, P. 312].
We distinguish here between two concepts, stationarity (homogeneity) and heterogeneity.

Most porous media are heterogeneous, meaning that there does not exist a large length-scale
limit where the geometrical and physical properties stop fluctuating upon increasing the scale
from microscopic to macroscopic. Stationarity (homogeneity) assumes the existence of such
a scale, beyond which fluctuations decrease [2, 24].

2.3.1. Discrete space
Consider a cubic porous sample with side-length L, and let a be the macroscopic resolution.
With this, there are then N =

(
L
a

)d
non-overlapping volume elements in the sample that

could be addressed by their position vectors [24, P. 313]

~ri = ~ri1···id
= (ai1, . . . , aid) , (2.3.1)

4



2. Theoretical introduction

where the integers 1 6 i1, · · · , id 6 L
a
, and ~ri is a shorthand notation for ~ri1···id

. A ran-
dom configuration G of an n-component porous medium is then given as an N -tuple G =
(X1, . . . , XN) = (X(~r1), . . . , X(~ri)), where the random variables Xi ∈ In = {ρP1 , . . . , ρPn}
are [24, P. 313]

Xi = X (~ri) =
n∑

j=1
ρPj
· χPj

(~ri) (2.3.2)

that indicate to the presence of the phase Pi in the volume element ~ri as defined from
its probability distribution ρPi

. The set I = {ρP1 , . . . , ρPn} is a set of indicators, here the
probability distributions, that are used to label every phase. The discretization of the system
is chosen so that ri /∈ ∂Pj for all 1 6 i 6 N and 1 6 j 6 n.
A stochastic n-component porous medium is defined as a discrete probability distribution

on the set of geometries [24, P. 313]

µ (x1, . . . , xN) = Pr {G = (x1, . . . , xN)}
= Pr {(X1 = x1) ∧ · · · ∧ (XN = xN)} (2.3.3)

where xi ∈ In = {ρP1 , . . . , ρPn} . The expectation values of the functions f (G) = f (x1, . . . , xN)
of the stochastic geometry are [24, P. 314]

〈f (G)〉 = 〈f (x1, . . . , xN)〉 =
∑

x1∈In

· · ·
∑

xN∈In

f (x1, . . . , xN)µ (x1, . . . , xN) , (2.3.4)

where the sum goes over every configuration in the geometry.
A stochastic porous medium is called homogeneous (stationary) if the distribution µ (x1, . . . , xN) =

µ (x (r1) , . . . , x (rN)) is translational invariant [24, P. 314], meaning

µ (x (~r1) , . . . , x (~rN)) = µ (x (~r1 + ~q) , . . . , x (~rN + ~q)) (2.3.5)

for all N ∈ N, ~q ∈ R.
A stochastic porous medium is called isotropic if its distribution is invariant under Euclidean

motions [24, P. 314], meaning

µ (x (~r1) , . . . , x (~rN)) = µ
(
x
(←→
R · ~r1

)
, . . . , x

(←→
R · ~rN

))
(2.3.6)

for all N ∈ N, where ←→R refers to an operator that consists of a translation and rotation.
The possible geometries have nN elements. For a sample with side length L = 1 cm

and discretized with resolution a = 10−10 m, we find 21024 possible configurations; therefore,
the probability distribution µ (x1, . . . , xN) is not enough to give a complete description for
all volume elements, but this does not deny the theoretical importance of the microscopic
distribution µ (x1, . . . , xN). It is in fact more useful to generalize it to continuous space
where infinite amount of data is required to specify the distribution [24].
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2. Theoretical introduction

2.3.2. Continuous space
Rather than discretizing the space, we could work with random sets in continuous space.
Literature for random sets are [33, 28], and more details in [24].
In order to define random sets, recall probability space and random variables [38, 10, 11].

In probabilities theory, an event E is a subset of a set O that represents all possible outcomes
of a random experiment. The probability of an event Pr (E) is a set function that obeys the
basic rules Pr(O)=1 and Pr (E) > 0 and Pr (∪∞i=1Ei) = ∑∞

i=1 Pr (Ei) where Ei ∩ Ej = ∅ if
i 6= j. We define the conditional probability of an event E given an event G as

Pr (E|G) = Pr (E ∩G)
Pr (G) . (2.3.7)

Random variables are real valued functions on the probability space. Random sets are a
generalization of random variables, where random sets could be understood in the same way
we do with random variables with the concept “hit or miss”. With this concept, it is possible
to characterize a random set by intersecting it with a few arbitrary compact test sets, and
recording whether the intersection is empty [33, 28]. Let F denote all closed sets in Rd

including the empty set ∅, and K denotes all compact sets. The smallest σ-algebra F of
subsets of F which contains all the hitting sets is defined as FK = {F ∈ F : F ∩K 6= ∅}
where K is a compact test set. In this context we define an event to be the statement
whether a random set hits a particular countable family of subsets.
A random set X is defined as a measurable map from probability space (O,D, µ) to (F ,F)

[33]. This gives the possibility for the assignment of probabilities to countable unions and
intersections of the sets FK which are the elements of F. For example

Pr (FK) = µ
(
X−1 (FK)

)
(2.3.8)

is the probability for the intersection X ∩ K not to be empty. This probability plays an
important role in geometric characterization of porous media based on capacity functionals
[33, 7, 24]. Note that there does not exist a mathematical formula for the expectation value
as there is for the discrete case, in Eq. 2.3.4. Its definition that is not needed here, requires
the introduction of functional integral on infinite dimensional spaces, or the study of random
measures associated with random set X [33, 24].
The concepts of stationarity and isotropy are straightforwardly generalized as a conse-

quence for the expectation value not being readily carried over to the continuous case. We
call a random set X stationary if [24, P. 316]

Pr {X ∩K 6= ∅} = Pr {(X + ~r) ∩K 6= ∅} (2.3.9)

for all vectors ~r ∈ Rd and all compact sets K. G+~r is a notation that denotes the translated
set defined as [24, P. 316]

G + ~r = {~q + ~r : ~q ∈ G} (2.3.10)

for G ⊂ R and ~r ∈ R. The analogous notation gives

6



2. Theoretical introduction

RG = {R~q : q ∈ G} (2.3.11)

for R a rigid euclidean motion, it is allowed to define an isotropic random set if

Pr {X ∩K 6= ∅} = Pr {(RX) ∩K 6= ∅} (2.3.12)

for all rigid motions R and compact sets K. Later we will use the notation

cG = {c~q : ~q ∈ G} (2.3.13)

to denote the multiplication of sets by real numbers. The traditional definition of stationarity
that is presented in 2.3.9 is restricted to macroscopically homogeneous porous media. The
general definition of stationarity is a special case of the more general concept of fractional
stationarity which describes macroscopic heterogeneity [18, 17, 19, 21].
The mathematical definition of random sets in continuous space is even less accessible from

a practical point of view than its definition for a discretized space. A complete specification
of a random set would need the specification of every compact or every closed subset of Rd

which is practically impossible [24, P. 316].

2.4. Geometrical characterization
A complete specification of the microstructure of real porous media is not practical. In this
section we discuss the possibilities to describe a porous medium without specifying all its
porous geometry in details which is our main theoretical task [24, P. 316].
Characterization of porous media in general has to satisfy the following requirements [24,

P. 316]:

• It should be well defined in terms of geometric quantities.

• It should involve only parameters which are directly observable or measurable in an
experiment independent of the phenomenon of interest.

• It should not require the specification of too many parameters. The required indepen-
dent experiments should be simple and economical to carry out. What is economical
depends on the available data processing technology.

• The characterization should be usable in exact or approximate solutions of the equations
of motion governing the phenomenon of interest.

In this section, we will discuss methods on the basis of porosity φ̄, correlation functions Sn (~r),
Cn (~r), local porosity distributions µ (φ). Table 2.1 shows the advantages and disadvantages
of the geometric characteristics that are going to be used in this thesis.

7



2. Theoretical introduction

Characterization well defined predictive economical easily usable
φ̄, . . . yes yes yes yes
S2 (~r) yes yes yes yes

Sn (~r) , . . . (n ≥ 3) yes yes no yes
µ (φ) yes yes yes yes

Table 2.1.: From [24, P. 318]. Advantages and disadvantages of different geometrical char-
acteristics of porous media. We call a geometrical characterization economical
if it requires the specification of less than 1012 numbers. φ̄ stands for porosity
and other numbers (Minkowski functionals) that are going to be discussed later.
Sn (~r) is the correlation function between/among every n points. µ(φ) is the
local porosity distribution, that will be discussed later.

2.4.1. Porosity and specific internal surface
2.4.1.1. Porosity

Porosity is the most important characteristic of a porous medium. Most physical properties
are influenced by it [24, P. 317].
For a two component or two-phases porous medium that consist of a pore space phase P

(phase one) and a matrix phase M (phase two) where the whole sample S is defined as the
union of those two phases S = P ∩M we define the porosity as the ratio

φ (S) = V (P)
V (S) , (2.4.1)

which is basically the volume fraction of the pore space. V (P) denotes the volume of the
pore space defined in Eq. 2.2.3, where we used the shorthand V3 (P) = V (P), and V (S) is
the total volume of the sample.
The definition 2.4.1 could be easily extended to stochastic porous media, by just having

φ and V (P) as random variables. If the medium is homogeneous, one finds using 2.2.3 and
2.3.4

〈φ〉 = V (P)
V (S)

= 1
V (S)

〈ˆ
S
χP (~r) d~r

〉

= 1
V (S)

ˆ
S
〈χP (~r)〉 d~r

= 1
V (S)

ˆ
S

Pr {r ∈ P} d~r

= Pr {~r0 ∈ P}
= 〈χP (~r0)〉 , (2.4.2)

8



2. Theoretical introduction

where the last two statements hold only if the medium is stationary, and the ~r0 is an arbitrary
point [24, P. 318]. As discussed formerly in Sec. 2.3.1, the expectation value used in the
previous set of equations has to be applied on a discretized sample; nevertheless we used
a continuous notation to indicate that it holds for the continuous case as well. If the
stochastic medium is mixing or ergodic in addition to it being homogeneous and being
infinitely extended, then the limit

φ̄ = lim
R(S)→∞

φ (S) = 〈φ〉 (2.4.3)

exists and equals the porosity of the sample 〈φ〉 [24, P. 319]. We define the diameter R (G)
of a set G as R (G) = sup {|~r1 − ~r2| : ~r1, ~r2 ∈ G} where sup is the supremum and indicates
the supremum distance between pairs of points [24, P. 319]. φ̄ = χP (~r) is a notation that
indicates a spatial average while 〈φ〉 = 〈χP (~r)〉 is a configurational average.
Eq. 2.4.3 represents an ideal case [24, P. 319]. Geological porous media are often hetero-

geneous on all scales, for example see [2], which means that their volume fraction φ (R (S))
would not reach a limit if R (S) → ∞. Eq. 2.4.3 assumes the homogeneity of the sample
[24, P. 319] (Sec. 2.3). If such a sample is homogeneous the right length scale could be used
to define what is called “representative elementary volume” [2, 1, 24].

2.4.1.2. Specific Internal Surface Area

The specific internal surface is an important characteristic of a porous medium just like the
porosity. Actually, with a large surface to volume ratio a porous medium is loosely defined.
The specific internal surface is an important measure for the surface to volume ratio [24, P.
320].
We define the specific internal surface for a two component porous medium as

S = V2 (∂P)
V3 (S) , (2.4.4)

where V2 (∂P) is the surface area, as define in Eq. 2.2.3 of the boundary set ∂P. In practical
samples, the specific surface area exists as a finite value only if the internal surface ∂P fulfills
suitable smoothness requirements. Fractal surfaces would have the value V2 (∂P) =∞ [24,
P. 320].

2.4.2. Correlation functions
Porosity and specific surface are merely two numbers that characterize the geometrical prop-
erties of a porous medium. It is obvious that these numbers are not sufficient at all for a
detailed statistical characterization of the medium. A full characterization can be given by
the multi-point correlation functions [24, P. 321].
The average porosity of the sample is given formerly in Eq. 2.4.2 as

〈φ〉 = 〈χP (~r0)〉 = Pr {~r0 ∈ P} (2.4.5)

9



2. Theoretical introduction

in terms of the expectation value of the random variable χP (~r0), where it takes the value 1
if the point ~r0 lies in pore space and otherwise 0 [24, P. 321]. This function is an example of
a one-point correlation function. An example of a two-point point correlation function would
be the covariance function C2 (~r0, ~r) which is the covariance of two random variables χP (~r)
and χP (~r0) at two points ~r and ~r0,

C2 (~r0, ~r) = 〈[χP (~r0)− 〈χP (~r0)〉] [χP (~r)− 〈χP (~r)〉]〉 . (2.4.6)

For a homogeneous medium, the covariance depends only on the difference ~r − ~r0, where
setting ~r0 = 0 does not affect the generality of the measurement [24, P. 321]. This yields

C2 (~r) = 〈χP (0)χP (~r0)〉 − 〈φ〉2 .

Since χ2
P (~r0) = χP (~r0) it follows that C2 (0) = 〈φ〉 (1− 〈φ〉). The correlation coefficient of

two random variables X and Y is defined in general as ratio of the covariance cov (X, Y )
to the two standard deviations of X and Y [10, 11, 24]. The correlation coefficient varies
between 1 and −1 corresponding to complete correlation or anti-correlation. The covariance
function is normalized often to have a similar measure to the correlation coefficient by dividing
it by C2 (0) to obtain the two-point correlation function

G2 (~r) = C2 (~r)
C2 (0) = C2 (~r)

〈φ〉 〈1− φ〉 . (2.4.7)

The general n-th moment function is defined [24, P. 322] as

Sn (~r1, . . . , ~rn) =
〈

n∏
i=1

(χP (~ri))
〉
, (2.4.8)

where the average in the last equation is defined in Eq. 2.3.4 with respect to the probability
density of the microstructure defined in Eq. 2.3.3.

2.4.3. Local geometry distribution
Local geometry distribution is one of the well defined geometric characterization of stochastic
porous media [24, 14, 15, 16, 23, 25, 6]. We will discuss few types of geometry distributions
that define different characteristics in a porous medium.

2.4.3.1. Local porosity distribution

Local porosity distribution can be defined for deterministic and for stochastic porous media
[24, P. 332]. Consider partitioning a deterministic porous medium S to K = {K1, . . . ,KM},
which are M mutually disjoint subsets, called measurement cells Kj. Thus ⋃M

j=1 Kj = S
and Ki ∩ Kj = ∅ if i 6= j. A particular partitioning was used in the original publications
[15, 16, 6, 20] where the Kj are unit cells centered at the vertices of a Bravias lattice
superpositioned on S. This offers the convenient feature that Kj are a translated set of
itself. Fig. 2.4.1 represents the partitioning mentioned.
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2. Theoretical introduction

Figure 2.4.1.: Slice of a discretized and thresholded Bentheimer sandstone partitioned into a
simple cubic lattice. Black color represents voids [24].

The local porosity in a measurement cell [24, P. 332] is

φ(Kj) = V (P ∩Kj)
V (Kj)

= 1
Mj

∑
~ri∈Kj

χP (~ri) , (2.4.9)

where the second equality is there under the assumption of a discretized space, and Mj will
denote total number of volume elements (or voxels) in Kj. Thus the empirical one cell local
porosity density function [24, P. 332] is defined as

µ̃ (φ;K) = 1
M

M∑
j=1

δ (φ− φ (Kj)) , (2.4.10)

where δ (x) is the Dirac δ-function. Physically we define µ̃ (φ;K) as the probability for a
cubic measurement cell within the side-length K to have the porosity φ [24, P. 332]. This
distribution depends obviously on the cell size chosen for partitioning the sample space. Two
extreme choices are to be discussed here and are of special interest [24, P. 332]. First one is
setting M = N (N is the total number of voxel in the discretized sample image), and thus,
every Kj will contain one volume element Kj = {~rj} with 1 ≤ j ≤ M = N . In this case,
every cell will have either the value φ (Kj) = 1 or φ (Kj) = 0 depending on whether the cell
lies in pore space (1) or matrix (0). Thus the resulting distribution would be [24, P. 333]

µ̃ (φ; {{~r1} , . . . , {~r2}}) = φ (S) δ (φ− 1) + φ (M) δ (φ) , (2.4.11)

where φ (S) is the total porosity, and φ (M) is the total volume fraction of the other com-
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2. Theoretical introduction

ponents. The other extreme is for M = 1, and thus K1 = S, meaning, that the only
measurement cell contains the whole sample. In this case the distribution is, obviously,

µ̃ (φ; {S}) = δ (φ− φ (S)) . (2.4.12)

Note that both extremes determine the local porosity density through the total porosity φ (S),
where φ (S) = φ̄ if the sample is sufficiently large and ergodic, where 2.4.3 holds as well [24,
P. 333].
For stochastic porous media, the extreme cases give similar results, after setting expecta-

tion values upon them. The first extreme gives the one cell local porosity density function
[24, P. 333] defined for each measurement cell as

µ (φ;Kj) = 〈δ (φ− φ (Kj))〉 , (2.4.13)

where Kj ∈ K is an element in the partitioned sample space. The other extreme, namely,
when M = N , where Kj = {~rj}, one finds using Eq. 2.4.2

µ (φ; {~ri}) = Pr {X (~ri) = 1} δ (φ− 1) + Pr {X (~ri) = 0} δ (φ) (2.4.14)
= 〈φ〉 δ (φ− 1) + (1− 〈φ〉) δ (φ) , (2.4.15)

which is independent of j [24, P. 334]. If mixing 2.4.3 holds then φ (S) = 〈φ〉 = φ̄ if the
sample is sufficiently large, and the result becomes identical to Eq. 2.4.11 for deterministic
media. One finds also in the other extreme of the coarsest partition [24, P. 334]

µ (µ;S) = 〈δ (φ− φ (S))〉 , (2.4.16)

which differs from 2.4.12 even if the sample is large, while mixing holds. This observation
is important, because it emphasizes the necessity of considering more carefully the infinite
volume limit S→ Rd.

2.4.3.2. Local percolation probability

In addition to the local porosity distribution it is necessary to characterize the geometrical
connectivity of the porous medium. This is important for discussing transport properties
which are highly sensitive to the connectivity of the medium, and less sensitive to its average
porosity or specific internal surface [24, P. 340].
Two points inside the pore space P of a two-component porous medium are called con-

nected if there is a path contained entirely within the pore space that connects those two
points [24, P. 340]. With this connectivity criterion, a cubic measurement cell K is called
percolating if there exists two points on the surfaces of the cell which are connected to each
other [24, P. 340]. The local percolation probability λ (φ, S;K) is defined [24, P. 340] as
the probability of finding a percolating geometry in the measurement cells K, whose local
porosity is φ, and whose local specific internal surface is S. In practice, the estimator for
λ (φ, S;K) is the fraction of percolating cells which have the prescribed values of φ and S.

12



2. Theoretical introduction

We define also the total fraction of percolating cells through the average local percolation
probability

p (K) =
ˆ ∞

0

ˆ 1

0
λ (φ, S;K)µ (φ, S;K) dφ dS (2.4.17)

which is an important global geometric characteristic [24, P. 340].

2.5. Transport properties
The transport property, permeability, is investigated using a Lattice Boltzmann (LB) imple-
mentation and Darcy’s law [34].

2.5.1. Permeability
The fluid’s permeability, k, in a porous medium is defined through Darcy’s law

〈v (~x)〉~x∈S = −1
η

k 〈∇p〉~x∈S ,

where 〈~v (~x)〉~x∈S represents the fluid’s average velocity in the whole sample, and 〈∇p〉~x∈S is
the average pressure gradient, and η is the dynamic viscosity of the fluid. The permeability,
k, is a second rank tensor [32]. The unit of permeability is m2, but often the unit “Darcy”
is used, 1D = 0.9869µm2.
Darcy’s law is derived from the homogenization of stationary Stokes equations for incom-

pressible fluids

−∇p (~x) + η∆~v (~x) = 0,
∇~v = 0,

with the boundary condition

~v (~x) = 0, ~x ∈ ∂P,

where ∂P is the surface between the pores and matrix. The derivation can be found in [24]
and the references there in.
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3. Experimental sample
The following had been provided to us to study a Bentheimer sample

• µ-CT images for the Bentheimer

• grain size distribution for the modeling procedure.

In this chapter, we will discuss the analysis of the µ-CT images. The discussion and use of
the grain size distribution will be postponed to Chapter 5.

3.1. Reading the data and visualizing it in 3D
The sample was provided in 831 files; every file represents a 2D slice of the 3D µ-CT dataset.
The resolution of the images is 3.7µm. The files are binary images stored as 32-bit little
endian byte order, float format with IEEE 754 standard. Every 2D image’s slice size is
2048 × 2048 pixels; i.e., every pixel uses 4 bytes that represent a real number that in role
represents a gray-scale value pixel. Fig. 3.1.1 shows a slice of the data provided.

14



3. Experimental sample

Figure 3.1.1.: 2D slice of a µ-CT image of Bentheimer sandstone at resolution 3.7µm. The
brightness was enhanced for better visualization. The grains are shown in
white, where as the pore-space appears in dark-gray.

In order to get rid of the useless regions, like ring artifacts (Fig. 3.1.2) and margins, the
data was cropped from 2048×2048×831 to 1024×1024×512 voxels. Fig. 3.1.3 shows the
same slice of Bentheimer in Fig. 3.1.1 after being cropped. The cropped images’ boundaries
are

x ∈ [545, 1569] ;
y ∈ [466, 1490] ; (3.1.1)
z ∈ [19, 530] ,
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3. Experimental sample

where the first voxel is numbered 0 in every direction. Not unworthy to mention, that some
ring artifacts are still there after the crop. The crop reduced them as much as possible,
because they dominate in the last 200 2D slices of the dataset.

Figure 3.1.2.: Slice of the µ-CT data provided for Bentheimer. A ring artifact can be seen
in this image.
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3. Experimental sample

Figure 3.1.3.: Bentheimer µ-CT slice of Fig. 3.1.1 after being cropped by the dimensions
given in Eq. 3.1.1.

3.2. Sample analysis
In the image shown in Fig. 3.1.3, three different phases (components) other than voids can
be seen. We call them

• Normal grains

• Fillings

• Cementations.

as shown in Fig. 3.2.1.
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3. Experimental sample

Figure 3.2.1.: Phases of Bentheimer sandstone.

3.2.1. Finding volume fractions of the phases
The first step in the analysis of the sample is finding the volume fraction of each phase.
This step is done in order to determine the necessity of modeling each phase, and in order to
find the appropriate G-function (primordial filter function) [5] for the sample if it is required.
We start with statistics on the gray-scale values of the Bentheimer images. Fig. 3.2.2 shows
a histogram for the gray-scale values of the experimental µ-CT images provided. We can
see obvious two peaks. The high peak represents the gray-scale values of the normal grains,
while the lower one represents the voids. This is confirmed by thresholding [12] the image
and checking the effect of thresholding on the phases.
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Figure 3.2.2.: Gray-scale values histogram for Bentheimer. We can figuratively see the phases
mentioned in Sec. 3.2.1. The high peak represents the Normal grains, where
we find them dominant. The short peak represents the voids, which are signif-
icantly present. The valley between the two peaks contains the fillings. The
cementations are on the right to the high peak. Those observations were con-
firmed by thresholding the image and noticing the effect of different thresholds
on the image.

It is important to make it clear, the difference between segmentation and thresholding.
Thresholding is the mere operation of specifying a gray-scale value threshold that defines a
characteristic function (Sec. 2.2). Meaning, for each pixel, if the gray-scale value is less than
the threshold, it is assigned the value 0; otherwise, it is assigned the value 1. Segmentation
is more complicated, where we are meant to separate every phase (or, in general, objects
from an image) using any image processing means necessary.
Segmenting normal grains was not a problem due to their high volume fraction. The

problem showed up with fillings where we see in Fig. 3.2.2 that the right threshold cannot be
determined directly due to the low volume fraction of fillings, that is relatively low. Fig. 3.2.3
shows the result of trying to segment the fillings using bare thresholding. We can see that the
rims of the normal grains are included in the threshold. This problem is due to the spatial
color gradient between normal grains and voids; a part of it lies in the fillings’ gray-scale
region; i.e., in the valley in Fig. 3.2.2.
A similar problem was found for cementations. We can see in Fig. 3.2.3 that the spatial

local fluctuations of normal grains’ gray-scale values for every individual grain make the gray-
scale values of cementations coincide with some regions in the normal grains; meaning, that
the high peak in Fig. 3.2.2 contains some of the cementations regions. We can see, also, in
Fig. 3.1.3 that cementations do not have a single color along their spatial region; the fact
that causes them to appear “cracked” after thresholding as can be seen in Fig. 3.2.3.
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3. Experimental sample

Figure 3.2.3.: Thresholding Bentheimer data. Slice of Fig. 3.1.3 is shown. Black color rep-
resents the desired regions. Left: thresholding fillings. The rims of normal
grains are included in thresholding process. Right: thresholding cementations.
Spurts from normal grains are included in the thresholded image due to the
fluctuations of the spatial local gray-scale values of normal grains.

In the following we address this problem. A possible solution we proposed to the problem
consists of three steps. First step is applying a median filter [12] to the data given, in order
to make the gray-scale values locally homogeneous. The second step is, then, thresholding
the gray scale image we get after applying the median filter. Then, finally, apply the Hoshen-
Kopelman algorithm [26] (Appendix A.1) on the data that is converted to a binary image by
thresholding (to the images’ set that contains only ones and zeros). This process drops the
rims seen in Fig. 3.2.3, since they do not form big clusters as we discuss in detail in Appendix
A.1.
The median filter was applied in 3 pixels’ depth as a compromise between achieving the

purpose of the filter and not totally smearing the image. Fig. 3.2.4 shows the data from
Fig. 3.1.3 after applying a 3-pixels depth median filter to it; however, the median filter does
not suffice for getting rid of the rims that are found in Fig. 3.2.3.
The Hoshen-Kopelman algorithm was applied in order to retain the fillings; however, the

standard algorithm was modified to achieve the desired purpose. Appendix A.1 explains the
Hoshen-Kopelman algorithm in detail; it explains what we have altered in the algorithm to
fit our purpose.
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Figure 3.2.4.: Bentheimer µ-CT image slice from Fig. 3.1.3 after applying a 3-pixel depth
median filter.

The image gray-scale thresholding was done, separately, for two subsequent ranges of gray-
scale values; then, the Hoshen-Kopelman algorithm was applied on each binary image that
resulted from each thresholding operation. This is done, because the rims, that we want to
get rid off, are caused by a spatial gradient between normal grains and voids; this thresholding
method makes the rims thinner; i.e., smaller clusters for better separation. Finally, the output
of the two ranges were combined.
For the fillings, the cluster-size threshold (Appendix A.1) was chosen to be 1250 voxels.

This threshold was chosen according to visual basis; it removes the rims found in Fig. 3.2.3
and retains the fillings. For the cementations, cluster-size threshold (Appendix A.1) was
chosen to be 750 voxels on the same basis. Fig. 3.2.5 shows the output for the Hoshen-
Kopelman algorithm for both fillings and cementations.
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Figure 3.2.5.: The result of applying the Hoshen-Kopelman algorithm on Bentheimer sample.
The original µ-CT slice is the one shown in Fig. 3.1.3. Black color represents
the desired regions. Left: fillings. Right: cementations.

The volume fraction of fillings was found to be 0.93%, and for cementations 0.97%. In
later sections, we show that those two phases are to be neglected due to their weak effect on
the microstructure’s characteristics, and due to the high efforts needed for their modeling.
Modeling cementations does not differ from modeling normal grains. We see from Fig. 3.1.3

that cementations have just a different color than normal grains, in addition to the cracks
they have. Unfortunately, modeling them in their “cracked” form is not possible; however,
we will consider them to be included in the standard modeling of the normal grains, i.e.,
nothing special will be done to model them.

3.2.2. Analyzing the segmented the sample
In this section, we try to find the best threshold that separates the normal grains from voids.
We choose the threshold for the sample using Otsu’s method [12, 36, 35]. Then, we threshold
the sample at various gray-scale values around it.

Otsu’s method Otsu’s method [12, 36, 35], in computer science, is an algorithm for
finding the optimum threshold to separate two classes of pixels; namely, foreground and
background pixels (which is the case for voids and normal grains). The algorithm seeks a
threshold that minimizes the within-class variance. The within-class variance is defined as
the sum of variances of the two classes

σ2
W = ω1 (t)σ2

1 (t) + ω2 (t)σ2
2 (t) , (3.2.1)

ωi are the probabilities of the two classes at a threshold t, and σi are the variances of these
classes. Otsu showed that minimizing the within-class variance is equivalent to maximizing
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the between-class variance

σ2
B = ω1 (t) (µ1 (t)− µT (t))2 + ω2 (t) (µ2 (t)− µT (t))2 = ω1 (t)ω2 (t) (µ1 (t)− µ2 (t))2 ,

with µT being the total mean at a threshold t

µT (t) = ω1 (t)µ1 (t) + ω2 (t)µ2 (t)

where µi are the classes’ means. The algorithm acts best on a gray-scale image that contains
two peaks (as it is in Fig. 3.2.2). If there are more peaks, the algorithm, then, has to be
modified for more classes; this operation is called “Multithresholding”.

3.2.2.1. Minkowski functionals

The Minkowski functionals were measured using the algorithm in [30] for different thresholds;
this is done in order to determine the error range for each characteristic. Table 3.1 shows
the measurements of Minkowski functionals. This data is plotted in Fig. 3.2.6 for better
understanding of the trend of Minkowski functionals as a function of the gray-scale threshold
chosen for the Bentheimer experimental sample. Fig. 3.2.6 shows, also, an additional concern
we had for the fillings. In each plot in Fig. 3.2.6 there are three curves; “Bare Threshold”
represents the Minkowski functionals measured for the sample without altering it; i.e., from
Table 3.1. “Fillings to matrix” shows the Minkowski functionals for the sample, while dealing
with the fillings’ regions that we segmented in Sec. 3.2.1 as if they were matrix. “Fillings to
voids” shows the Minkowski for the sample, while dealing with fillings’ regions as voids.

Threshold 300 500 700 766.98 (Otsu)
Porosity 0.17834 0.194381 0.209363 0.21468

Specific surface (mm−1) 15.7435 15.91 17.0047 17.3802
Mean curvature (mm−1) 114.656 318.307 316.346 298.743
Total curvature (mm−1) 49572.1 6259.52 -9878.03 -16154.4

Threshold 900 1100 Average σ

Porosity 0.22587 0.245018 0.2113 0.0234
Specific surface (mm−1) 18.0627 19.1452 17.2077 1.2949
Mean curvature (mm−1) 249.684 248.967 257.7838 76.6801
Total curvature (mm−1) -21554 9402.64 2941.3 25908

Table 3.1.: Minkowski functionals for different gray-scale thresholds of the Bentheimer sam-
ple. Thresholds are given in arbitrary units (Fig. 3.2.2). σ is the standard
deviation.
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Figure 3.2.6.: Minkowski functionals as a function of the threshold in Bentheimer. The plots
contain also the cases, where we consider the fillings regions once as matrix
and once as voids.

The porosity curves, in Fig. 3.2.6, show that the gray-scale range we chose range from
having fillings as voids to having them as matrix. The existence of fillings barely affect the
porosity by 1%. The specific surface does not change greatly upon adding or removing matrix
in fillings’ regions. The mean and total curvature do not change monotonously; therefore, we
cannot state any conclusion about them; however, the effect of fillings on them is negligible,
compared with the standard deviation in Table 3.1.
We, now, have to decide, whether we have to model the fillings or not. From the previous

discussion, we see that having or not having the fillings does not affect the microstructure’s
characteristics strongly, and does not pay back the computer efforts needed to model it.
Modeling fillings is very expensive compared with what we need to model only one phase;
therefore, we will drop this phase from modeling.

3.2.2.2. Two-point correlation function

The correlation functions was calculated for the thresholds mentioned in Table 3.1. Fig. 3.2.7
shows their correlation function. The plot shows that the correlation functions for those
thresholds are almost identical.
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Figure 3.2.7.: Correlation function of the Bentheimer sample at different thresholds. We see
that close threshold have almost identical correlation function. The lines drawn
are thin; they are colored in order to make the comparison possible, since the
curves are extremely close to each other.

3.2.2.3. Local geometry distribution

Local porosity measurements are costly and require, prohibitively, long time; the fact that
has prevented us from doing the measurements for all thresholds. Here we present some
of the measurements we have done. Most of the measurements were done for the sample
thresholded by Otsu’s method; this threshold is considered to be a compromise between the
other thresholds.

Local porosity Local porosity measurements, with different measurement cells’ sizes, were
done for the Bentheimer sample thresholded by Otsu’s method. The cells’ sizes vary from
32 voxels (118.4µm) to 384 voxels (1420.8µm). Fig. 3.2.8 shows these measurements.
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Figure 3.2.8.: Local porosity distribution for the Bentheimer’s sample that is thresholded by
Otsu’s method with different measurement cell sizes. The measurement cell
is always a cube. The legend specifies the side-length of the measurement cell
for each curve.

As a compromise to get the other thresholds involved, Fig. 3.2.9 shows the local porosity
distribution for the other thresholds, but with only one measurement cell size; namely, a cube
with side-length 160 voxels (592µm). The systematic shift we find on them is due to the
change in porosity that happens when varying the threshold [9].
Those results are to be compared later with the model we created.
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Figure 3.2.9.: Local porosity measurements of the Bentheimer sample segmented with dif-
ferent thresholds, with a measurement cell size of 160 voxels (592µm).
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Local percolation probability Local percolation probability distribution was only mea-
sured for Bentheimer sample thresholded by Otsu’s method; the measurement is very costly.
The sample was, also, cropped to the size 512×512×512 voxels to make this measurement
feasible. The measurement would last up to two months with the full size of the sample.
With this crop the measurement time is reduced to one week. Fig. 3.2.10 shows the local
percolation probability for the Bentheimer sample thresholded by Otsu’s method. The mea-
surements done in this thesis involve λ3 (φ, S;K) (Sec. 2.4.3.2). This function gets the value
1 for each measurement cell if the cell percolates in three directions, and gets the value 0
otherwise. Those results are to be later compared with the model we created.
The local porosity distribution was measured for the same cropped sample, and the same

measurement cell sizes, we used for the local percolation probability in order to calculate the
total fraction of percolating cells.
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Figure 3.2.10.: Local percolation probability of the Bentheimer thresholded by Otsu’s method
with different measurement cell sizes. The measurement cell is a cube, the
scales mentioned in the legend are the side-length of the measurement cube.

Total fraction of percolating cells Using the data of local percolation probabilities and
local porosity distribution, we calculated the total fraction of percolating cells. Fig. 3.2.11
shows the total fraction of percolating cells for the Bentheimer sample thresholded by Otsu’s
method. This result will be later compared with the model we created. No further discussion
will be stated for it in this section.
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Figure 3.2.11.: Local fraction of percolating cells for the Bentheimer sample thresholded by
Otsu’s method.

3.2.2.4. Transport properties

A lattice Boltzmann flow implementation [34] was run on the sample after cropping it to the
size 300×300×300 voxels. The crop was done due to the extremely high memory the lattice
Boltzmann simulation requires. Those results are to be, later, compared with the model we
created.

Attribute Value
Average velocity in z-direction 1.35× 10−3 µm/s

Variance of velocity in z-direction 7.30× 10−6 µm/s

Min-Max velocity in z-direction [−3.36× 10−2, 1.81× 10−1] µm/s

Dynamic viscosity 0.0264 kg/s·µm

Global pressure gradient −4.31× 10−5 kg/s·µm2

Permeability 3.09D

Table 3.2.: Lattice Boltzmann simulation results for Bentheimer sample thresholded by Otsu’s
method.

3.3. Conclusion and summary
In this chapter we dealt with a part of the provided data; namely, the µ-CT images of our
Bentheimer sample. The analysis started by the concern of finding the volume fraction of
each phase. This implied segmenting every phase into a binary image, or a characteristic
function. Segmenting the normal grains was done by, simply, thresholding the µ-CT images.
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3. Experimental sample

This was possible due to this phase’s high volume fraction. The other phases, cementations
and fillings, were problematic due to their gray-scale values’ interference with the normal
grains, and due to their low volume fraction. The solution to the problem was accomplished
using a modified Hoshen-Kopelman algorithm (Appendix A.1). Nothing special can be done
for modeling cementations, since they differ from the normal grains by, only, their color
and the cracks they have. The modeling technique we are using does not support such
characteristics; therefore, modeling this phase will have no difference from modeling the
normal grains; in other words, it will be dropped.
After segmenting the phases, we measured different characteristic of our Bentheimer sam-

ple. The first measurement was done for the Minkowski functionals. Through Minkowski
functionals, and due to the low volume fraction of fillings, and judging from the high com-
puter efforts needed for modeling this phase, we decided that we will ignore this phase totally.
We measured also the two-point correlation function, local geometry distribution and, finally,
a transport simulation was simulated on the sample. Through the transport simulation, we
measured the permeability and other transport properties for the sample.
Now, after obtaining the measurements for our Bentheimer experimental sample, we turn

into the methods and techniques we will be using to build the Bentheimer model.
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4. Model generation

4.1. Introduction
The basics of the procedure we used to generate the Bentheimer model is described in
[3, 31, 4], with some improvements. In this model, the rock occupying a bounded region S ⊂
R3 is represented by crystallites placed in the continuum. Based on the depositional texture
of the given rock, S is first divided into a number of different regions, each corresponding
to distinct crystallite properties such as type, size, overlap, and orientation distribution.
Crystallites for each of these regions are, separately, deposited in a random sequence, and
then combined. Each element

ωi = (~xi, Ri,~ai, Ti) (4.1.1)

of the sequence represents a crystallite of type Ti at spatial position ~xi ∈ S with inscribed
sphere radius Ri and orientation ~ai.
In modeling of such rocks, the attributes of the crystallites defining the rock in the contin-

uum need to be correlated with the primordial depositional texture of the rock. This is done
by defining a gray-scale primordial filter function G : S→ [0, 1] that is carefully constructed
from the images and geological information available on the rock. G (~x) is a given function
that determines whether a crystallite can be deposited at ~x and of what size, orientation,
type, etc. The crystallite attributes are defined through G as

Ri = R (G (~xi)) ; (4.1.2)
~ai = A (G (~xi)) ; (4.1.3)
Ti = T (G (~xi)) , (4.1.4)

where R : [0, 1] → [Rmin, Rmax] ∪ {0}, A : [0, 1] → E, and T : [0, 1] → {1, 2, . . . , g}.
E = {~x ∈ R3 : |~x| = 1} is the unit sphere, [Rmin, Rmax] ⊂ R1 and g is the number of
separate regions within the rock with distinct crystallite properties. If ~xi falls in the pore
space including the vuggy pores; R (G (~xi)) = 0, and no crystallite deposition is allowed
there.
The procedure starts with packing spheres in a box; that we call deposition. Then, we

assign grain shapes for those spheres and orient them; that we call decoration. Finally, we
discretize this continuum model on a cubic grid; that we call discretization. In the following
sections we discuss each step in detail.
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4. Model generation

4.2. Deposition
Packing spheres in a box has always been a challenging problem, especially when it comes to
multiscale spheres packing, because the number of deposited spheres increase significantly
for highly polydisperse packings.
To ensure a fully supported matrix in the sphere packings, each deposited sphere has to

have a finite overlap with at least one of the existing spheres. For two spheres labeled i and
j having radii Ri and Rj, and having centers at positions ~xi and ~xj. The overlap between
these two spheres is defined as [3, 31, 4]

Oi,j = Ri +Rj − |~xi − ~xj|
Ri +Rj − |Ri −Rj|

, (4.2.1)

which has to be finite and smaller than λi = Λ (G (~xi)). This new function Λ : [0, 1] →
[λmin, λmax] also correlates the degree of spheres, i.e., crystallites, overlap with the primordial
depositional texture through G.
Many methods for spheres packing were implemented. In the following we discuss each

one of them.

4.2.1. Monte-Carlo random deposition
This method is used in [31, 4]. In this method spheres are added sequentially by proposing in
every step random coordinates and a random radius for each new sphere. Every newly added
sphere has to have a finite overlap with at least one of the deposited spheres, otherwise
the new sphere is rejected. The method in this simple concept is very costly and practically
impossible to implement for a few reasons

• If we start with one initial sphere in the box to be filled, and then run the Monte-Carlo
simulation. It is, then, almost impossible to have a finite overlap between the newly
inserted sphere and the initial one in the box; the probability for the new sphere to
hit the initial sphere is almost zero. Meaning, that we must have an initial sphere
deposition pattern.

• If we assume that the deposition worked and the first problem is solved. While the
deposition is evolving, and the box is filling up, the porosity will drop significantly, and
the spheres in the box will become denser. Then, the struggle to find a free place to
place a new sphere becomes harder and costly. Meaning, that reaching low porosity is
almost impossible, which is very similar to the first problem.

• Checking the overlap for all the spheres, or for every two spheres, in the box is an n2

problem along the deposition process. It becomes prohibitively costly, when the number
of deposited spheres is high, or when there is a relatively high ratio of polydispersity.

A solution to these problems is dividing the box S ⊂ R3 into smaller non-overlapping sub-
cells (cubic cells), i.e., S = U1 ∪ U2 ∪ U3 ∪ · · · . Not only this, but, also, ignore the lower
overlap condition (λmin). In other words, depositing non-overlapping spheres, or with negative
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overlap, is accepted; however, we rely on the high concentration of spheres to ensure their
connectivity. The overlap is only checked for the spheres in the sub-cell being filled. The
sub-cells for the deposition are filled randomly, not sequentially, in order to avoid correlations
between the sub-cells.
This method causes the problem of making those sub-cells, Ui, visible to the human

eye when creating dense packings. This happens if we look to the packing’s spheres as
pattern points; i.e., representing every sphere as a point, and neglecting their radii. This
problem happens due to the accumulation of the small spheres on the sides of the sub-cells;
consequently, the deposition has lost its random attribute and homogeneity and obtained
some correlations due to the improvements applied to the program.

4.2.2. Improved Monte-Carlo random deposition
The program that was already available for deposition had a lot of problems for me, personally,
that I could not deal with. The person who has written the program, B. Biswal, and who
had a role in [31, 4], had left the group, and the information available on the program
was not sufficient to edit it and solve some memory leak and overflow problems and so on.
Eventually, I decided to make my own program with the same basic scientific idea, based on
the information I have in [31, 4]. After the creation of the program, I found that the idea
could be enhanced, and the program could be improved. Unfortunately, the program was not
investigated deeply due to the rise of the new deposition program using Molecular Dynamics
(Sec. 4.2.3) created by T. Zauner and R. Hilfer, which exempted us, totally, from using the
idea of Monte-Carlo deposition.
In the improved Monte-Carlo method, we divide the deposition process into two steps. The

first step is similar to the normal Monte-Carlo deposition; we divide the region of deposition
into non-intersecting sub-cells, and deposit spheres in each cell randomly up to a certain
fraction of the total number of spheres that we want to deposit in each cell. The overlap is
not only, then, checked for the sub-cell being filled, but also for a certain neighbors depth of
sub-cells. For example, for neighbors depth of 1 cell, the overlap check will be done for each
sub-cell of the 26 surrounding sub-cells (surrounding in three dimensions with depth of one,
33− 1 = 26), in addition to the sub-cell itself that is being filled, making the check total for
33 = 27 sub-cells.
The next step is attaching spheres to the spheres deposited in the first step. This step is,

first, done by proposing a random radius for the new sphere, Rj, using a uniform random
number generator. Then, finding a random sphere among the ones already deposited and
reading its radius, Ri, and its position, ~xi. Then we find the distance, that the new sphere
has to have from the chosen sphere’s center, that is already deposited, in order to fulfill the
overlap condition, since the overlap is a function of the radii of the involved spheres, and the
distance separating them. We do this as follows:
We solve Eq. 4.2.1 as an inequality of the maximum and minimum overlap for the distance

as follows

λmin <
Ri +Rj − |~xi − ~xj|
Ri +Rj − |Ri −Rj|

< λmax; (4.2.2)
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Ri +Rj−λmin (Ri +Rj − |Ri −Rj|) > |~xi − ~xj| > Ri +Rj−λmax (Ri +Rj − |Ri −Rj|) ,
(4.2.3)

where |~xi − ~xj| is the distance between the spheres i and j. With this inequality, and having
λmin and λmax pre-defined, we can calculate the distance range between the two spheres they
need to have, so that they could have an overlap in the range [λmin, λmax]. Finally, proposing
a distance in the right range us, using a uniform random number generator, will leave another
two degrees of freedom unset; namely, the polar and azimuthal angles between the spheres.
We set those angles by proposing random values for the components of the position vector,
xj, of the new sphere within the constraint√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = |~xi − ~xj| , (4.2.4)

where xi, yi, zi are the components of the position vector, ~xi. With this information, we
start attaching spheres to the ones already in the sub-cell. The attaching process includes
an overlap check for each deposited sphere with the spheres in the current sub-cell and the
neighboring cells (if there exist spheres in the neighboring sub-cells) within the specified
depth, as we mentioned earlier in this section.
This method, apparently, solved the problem of the cubic correlation we mentioned in the

normal Monte-Carlo deposition, because the attached spheres do not necessarily lie in the
same sub-cell; the new spheres are allowed to be deposited outside the current sub-cell. The
advantages of the algorithm were not investigated deeply due to the rise of the new idea that
will be discussed in the next section. The advantage I mentioned, i.e., the correlation problem,
was confirmed only by viewing and comparing numerous different deposition patterns, that
are created with both the old and new programs with the same input parameters.

4.2.3. Molecular dynamics
This method is a new idea, and has the advantage of speed over the previous two methods.
In this method molecular dynamics was used; a repulsive potential if the spheres exceed the
allowed limit of overlap and attractive if the particles are away from each other up to some
limit. This is the method we chose for our modeling due to its high speed and efficiency
in creating a homogeneous packings. The idea and program is currently under development
in the group by T. Zauner and R. Hilfer. Details on the program should become clearer in
publications later to come.

4.3. Decoration
The standard decoration procedure used in [4, 3, 31] implies assigning a polyhedron to
every sphere and a random orientation for the Euler angles from a uniform random number
distribution. The angles assigned are limited by a specified range, i.e., [θmin, θmax]. The
polyhedra used formerly were almost isotropic, quartz crystallites and rombohedra in [31, 4]
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respectively, in means of their diameter length and, thus, orienting them through a uniform
random number generator was physically acceptable.
In Fig. 3.1.3, we see that a significant fraction of Bentheimer grains are elongated and

anisotropic. In the following, a new elongated polyhedra creation method is devised. Also, a
new method for orienting them to fit the needs of the Bentheimer sandstone is proposed.

4.3.1. Generating the polyhedra
Bentheimer sandstone, as can been seen in the µ-CT images provided (Fig. 3.1.3), has a
variety of grain shapes in a way that makes it difficult to find a non-random way to model
those grains with polyhedra. Here, an algorithm and methods we used in order to model
Bentheimer grains on random bases are discussed.
The Bentheimer grains do not have a certain type or polyhedron figure that dominates,

as the quartz crystallites in the case of Fontainebleau in [31], or the rombohedra in the
sandstone in [4]; therefore, there was not a specific way to create polyhedra and call them
the Bentheimer type. Problems arise, actually, with the fact that Bentheimer grains are
anisotropic, thus elongated in many different ways (prolate, oblate and non-convex).
Therefore, some special procedure to create those polyhedra was used. A procedure that

ensures totally stochastic outputs that look as much realistic as possible. Unfortunately, the
techniques we used do not support the feature of non-convex polyhedra, so this feature will
be dropped. This is due to the discretization algorithm that we will explain in Sec. 4.4.
The polyhedra created are a list of planes. A plane A is represented by a triplet (x, y, z).

The way this plane is determined through these three components is the following. If we
define a point p = (x, y, z) in R3, then by definition p ∈ A, and the plane is defined to
be perpendicular to the vector ~v (x, y, z). In other words, we indicate to a plane by the
corresponding vector ~v (x, y, z). This point guided us to randomly draw isotropic vectors
that create a polyhedron, then, use them in the way we need them.
Therefore, the creation of our polyhedra is done in two steps

1. Placing planes on a unit sphere, i.e., creating n planes on a unit-sphere’s surface by
proposing random vectors perpendicular to its surface (method of inscribed sphere).

2. Elongating the created isotropic polyhedra in two directions by two random ratios
(Method of polyhedron elongation).

4.3.1.1. Method of inscribed sphere

The planes are defined by vectors that point from the origin to a point on a unit sphere,
where every plane is perpendicular to the vector’s direction. This kind of definition is used
since it is the form the discretization program accepts as input. The discretization program
will be discussed in Sec. 4.4.
The task here lies in finding random vectors on a unit sphere. We use a pseudo-random

point generator on the sphere’s surface. This task is done by defining every vector as three
scalar components x, y, z that have the magnitude 1. The method we use for those numbers
is by the Cartesian-spherical coordinates conversion equations
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x = sin θ cosφ;
y = sin θ sinφ; (4.3.1)
z = cos θ,

where φ ∈ [0, 2π) and θ ∈ [0, π]. The creation is done by setting M steps for θ and, then, L
steps for φ. In every particular step for θ, we define θm values randomly where 0 6 m < M ,
and we define, also, in every step for θm the amount of L values for φ. Eventually, the planes’
components will look as in Table 4.1 for every polyhedron.

x y z

sin θ0 cosφ0 sin θ0 sinφ0 cos θ0
sin θ0 cosφ1 sin θ0 sinφ1 cos θ0
sin θ0 cosφ2 sin θ0 sinφ2 cos θ0

... ... ...
sin θ0 cosφL−1 sin θ0 sinφL−1 cos θ0
sin θ1 cosφ0 sin θ1 sinφ0 cos θ1
sin θ1 cosφ1 sin θ1 sinφ1 cos θ1
sin θ1 cosφ2 sin θ1 sinφ2 cos θ1

... ... ...

... ... ...
sin θM−1 cosφ0 sin θM−1 sinφ0 cos θM−1
sin θM−1 cosφ1 sin θM−1 sinφ1 cos θM−1
sin θM−1 cosφ2 sin θM−1 sinφ2 cos θM−1

... ... ...
sin θM−1 cosφL−1 sin θM−1 sinφL−1 cos θM−1

Table 4.1.: List of planes for every polyhedron in the first step of polyhedra creation. This set
of planes have the problem that every L values in z are equal. This forms “rings”
on the unit sphere’s surface we are creating the points on; rings correspond to
every value of z, which limits the quality of the planes being random. The solution
is proposed in Table 4.2.

The resulting polyhedron will haveM×L planes. The polyhedra are not written within this
form in the output file. In order to avoid having “rings” of resulting vectors, i.e., single θm

value for every L values of φ; another shuffling for every θm is done by adding or subtracting
(choice is random) a random value to/from every θm. The value added is set in a way that
it does not exceed θm−1 by subtracting or θm+1 by adding. The new polyhedron will look as
in Table 4.2.
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x y z

sin (θ0 ± ξ0) cosφ0 sin θ0 sinφ0 cos θ0
sin (θ0 ± ξ1) cosφ1 sin θ0 sinφ1 cos θ0
sin (θ0 ± ξ2) cosφ2 sin θ0 sinφ2 cos θ0

... ... ...
sin (θ0 ± ξL−1) cosφL−1 sin (θ0 ± ξL−1) sinφL−1 cos (θ0 ± ξL−1)

sin (θ1 ± ξL) cosφ0 sin (θ1 ± ξL) sinφ0 cos (θ1 ± ξL)
sin (θ1 ± ξL+1) cosφ1 sin (θ1 ± ξL+1) sinφ1 cos (θ1 ± ξL+1)
sin (θ1 ± ξL+2) cosφ2 sin (θ1 ± ξL+2) sinφ2 cos (θ1 ± ξL+2)

... ... ...

Table 4.2.: The final output of the polyhedra’s creation process. This table is a modified
version of Table 4.1.

4.3.1.2. Method of polyhedron elongation

Elongating a polyhedron cannot be done trivially by, for example, multiplying the scalars x, y
or z of Eq. 4.3.1 by an elongation ratio, because the planes are defined to be perpendicular to
the vectors. This does not apply in the case of an ellipsoid which is the result of doing such
an elongation operation. The result of such an operation would be losing the inner planes
being swallowed by outer ones. Such planes would be included in the output, but will not be
seen after discretizing the sample. In other words, they will only increase the computational
efforts needed uselessly.
A method to elongate a polyhedron is shifting its planes in the direction of elongation.

The shift is done by a value proportional to the cosine of the angle between the direction of
elongation and the direction of the plane (its corresponding vector). For example, to elongate
a polyhedron in z direction, we apply the following operation on every x, y and z

x′ = x · z√
x2 + y2 + z2 · η; (4.3.2)

y′ = y · z√
x2 + y2 + z2 · η; (4.3.3)

z′ = z · z√
x2 + y2 + z2 · η, (4.3.4)

where x′, y′ and z′are the planes after being shifted, η is the ratio of elongation.
This elongation is symmetric and does not affect the center of mass of the grain. Obviously,

this elongation increases the volume of the grain in an uncontrollable manner when the
elongation ratio is random. This makes it difficult to control porosity later (since the porosity
will become a strong function of the polyhedra’s orientation while the polyhedra are decorated
with elongated polyhedra). This is the case, especially, if the deposition method used deposit
spheres and not ellipsoids, which is the our case; where, obviously, the grains resulting from
this algorithm are anisotropic.
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In the procedure for Bentheimer, this operation of elongation is done twice. Once for
z direction and another for y direction. For every direction, a different and random η are
chosen for each direction. This elongation procedure does not guarantee the polyhedron
being oblate or prolate, because being elongated in one direction makes it prolate; and in
two makes it oblate if the elongation ratios are equal, while this is controlled by random
numbers (η in Eq. 4.3.2, 4.3.3 and 4.3.4).
In a try to retain the volume of the original elongated sphere, all planes are being shrunk

by the ratio √η isotropically. This is done by the operations in Eq. 4.3.5.
Note: the choice √η was done as a compromise between leaving them elongated with

much more volume than an isotropic object, and shrinking them by the ratio η which will
make the polyhedra a lot smaller than the spheres that they are supposed to decorate.

x′′ = x′√
max (ηy, ηz)

;

y′′ = y′√
max (ηy, ηz)

; (4.3.5)

z′′ = z′√
max (ηy, ηz)

,

where ηy, ηz are the elongation ratios in the y and z respectively. x′′, y′′ and z′′ are the
elongated versions of x′, y′ and z′ respectively.
In concept, those polyhedra are meant to decorate spheres on the deposition point pattern

of the sample being created (by deposition, Sec. 4.2). The decoration shows that shrinking
polyhedra this way makes them optimal within the volume of the sphere, and makes the
polyhedron shorter than the meant sphere in a direction and longer in the other ones or vice-
versa. Fig. 4.3.11 shows five random grains compared with the spheres they are supposed to
decorate in the deposition pattern; the third shape on the right is the grain and the sphere
combined in order to compare between their sizes. We see that the spheres always bump
from one direction and get swallowed in the other two, or vice-versa.

1The polyhedra used in Fig. 4.3.1 are with 64 facets, and elongated by the ratio 0.7.

37



4. Model generation

Figure 4.3.1.: Visualization of decorating spheres with polyhedra. The first column on the left
shows the polyhedron that is an output of the polyhedra creation algorithm.
The second column shows the sphere that is to be decorated by the polyhedron.
The third column on the right shows the result of combining the polyhedron
and the sphere together, in order to compare their volumes. We see that the
spheres bump from the sides of the polyhedron, due to the shrinking we applied
on them.
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4.3.2. Overlap minimizer
The diagenesis process that creates sandstones causes the grains to have homogeneous over-
laps in all directions regardless of the shape of the grain. This can be seen in Fig. 3.1.3.
In Sec. 5.1.3, we will quantitatively prove that the overlap between Bentheimer grains is ex-
tremely low, and we will show the importance of lowering the overlap. The current deposition
method, that is discussed in Sec. 4.2, has the problem that it takes into account only average
radius for the calculation of the overlap; i.e., an isotropic sphere overlap.

4.3.2.1. Formulating the problem

After a deposition process, imagine two spheres with low overlap as Fig. 4.3.2 shows (and as
we need in Bentheimer). If we randomly decorate those spheres with elongated polyhedra
from Sec. 4.3.1, as it is done in [3, 31, 4], the spheres of Fig. 4.3.2 may, then, look as in
Fig. 4.3.3.

R1

R2

Figure 4.3.2.: 2D cross section of overlapping spheres as an outcome of the deposition
process.

Figure 4.3.3.: Spheres from Fig.4.3.2 being decorated with grains in the decoration process.

In Fig. 4.3.3, we see that the overlap becomes greater; i.e., the polyhedra penetrate each
other more than spheres did. This problem becomes more dominating when the elongation
ratios of the polyhedra are greater, where the new overlap function between two polyhedra
becomes dependent on the orientation of the decorating grains. Formerly, decoration, as
mentioned in the introduction of Sec. 4.3, used to be done by a uniform random number
generator; i.e., by assuming three random Euler angles. Such an approach would cause the
formation of clusters of grains in the models (imagine the repetition of the case in Fig. 4.3.3),
and an inhomogeneous distribution of voids, which is very unrealistic in a diagenesis processes
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in nature. In this section we propose a method to lower the overlap by re-rotating the
polyhedra and giving them a preferred direction through a Monte-Carlo simulation; i.e., by
proposing new generalized quaternions that minimize the overlap.

4.3.2.2. Proposing a solution

The method we propose is finding what we call an effective radius rather than the standard
sphere’s radius we use, which depends on the orientation of the polyhedron.

Fitting polyhedra to ellipsoids First, the polyhedra, that we obtained from the algorithm
in Sec. 4.3.1, are fit to ellipsoids. This is done by finding the maximum values for the facets’
components x, y and z for every polyhedron. Then, a new database containing the polyhedron
number and its maximum x, y and z is created. The new database contains the equatorial
radii a = max(x), b = max(y) and c = max(z) of the polyhedra. An ellipsoid fitting
illustration is shown in Fig. 4.3.4.

Figure 4.3.4.: Carrying on Fig. 4.3.2 and 4.3.3. Grains from Fig. 4.3.3 being fit by ellipsoids.

Finding nearest neighbors, or subdividing the sample Then, the sample is analyzed.
The problem lies in the fact that such a measurement, overlap measurement between every
two spheres, is an n2 problem; meaning, that it would take, prohibitively, long time to do the
overlap measurement for big samples with high number of grains. Since we are concerned
only about adjacent grains, and since finding adjacent neighbors is not a trivial matter, the
solution we found for this problem is dividing the sample into sub-cells. Then, the overlaps in
every cell and its neighboring cells within a certain integer depth N (neighboring cells depth)
are measured.
What the program basically does, is going through every sub-cell, and picking every grain

in that sub-cell. Then, for every grain in this sub-cell, it measures the overlap with the other
grains within the same sub-cell and the grains within the neighboring sub-cells as well. This
approach reduces the problem from an n2 problem to a linear problem (n is the number
of grains in the sample), if the length scale is chosen properly. Not to mention, that this
approach becomes harder to apply for samples with high polydispersity.

Determining the effective overlap between every two ellipsoids The new overlap is
measured on the grounds of assuming two new spheres with effective radii that depend on
the relative ellipsoids’ orientations and on the line connecting their centers. If (x1, y1, z1) is
the center of the first deposited sphere, and (x2, y2, z2) is the center of the second deposited
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sphere. The connection direction vector, ~v, is defined as the vector difference between the
two center points, i.e.,

~v (vx, vy, vz) = (~x2 − ~x1)~i+ (~y2 − ~y1)~j + (~z2 − ~z1)~k, (4.3.6)

where~i,~j,~k are the unit vectors on the axes x, y, z respectively. The line connecting those two
ellipsoids’ centers touches their surfaces at two points, those two points can be determined
by the connection direction vector. Fig. 4.3.5 shows the line connecting the ellipsoids’ centers
and the points we need on their surfaces.

Figure 4.3.5.: The new radii of the spheres (the effective radii) that are set using the surfaces
of the ellipsoids. The bright spheres are the ones done by deposition. The
darker ones are the effective spheres. Notice that the effective spheres’ radii
are greater than the standard radii.

Figure 4.3.6.: The way we calculate the distance between the center and the point on the
surface that is determined by the connection direction vector. The ellipsoid
shown in this drawing is the one on the right in Fig. 4.3.5. A: is the connection
direction vector from Fig. 4.3.5. B: is the ellipsoid from Fig. 4.3.5 copied with
its orientation. C: is the ellipsoid without orientation, shown as it is stored in
the database we created for the ellipsoids. D: shows that getting the distance
between the center of the ellipsoid and the point on its surface, that is deter-
mined by the connection direction vector, could be done by inverse-rotating
the connection vector, which, figuratively, rotates the ellipsoid to its original
not-rotated situation.

41



4. Model generation

To obtain the distance between the center of an ellipsoid and the point on the surface,
that is being determined by the connection direction vector (the points in Fig. 4.3.5), we
do an inverse rotation of the connection direction vector by the Euler angles for the meant
grain (idea explained in Fig. 4.3.6). Since we have the equatorial radii of the ellipsoid, and
the connection direction vector relative to the not-rotated ellipsoid, we can easily obtain
the distance using the spherical coordinates equations and their conversion to Cartesian
coordinates

x = a sin θ cosφ; (4.3.7)
y = b sin θ sinφ; (4.3.8)
z = c cos θ, (4.3.9)

where θ and φ are obtained using the connection direction vector that we have applied the
inverse rotation by the Euler angles upon. For that we use the equations

θ = arccos
 vz√

v2
x + v2

y + v2
z

 ; (4.3.10)

φ = arctan
(
vy

vx

)
, (4.3.11)

where arctan, in Eq. 4.3.11, is the atan2 function, which is the inverse tangent function that
distinguishes the diametrically opposite directions in an ellipsoid.
Substituting Eqs. 4.3.10 and 4.3.11 in Eqs. 4.3.7, 4.3.8 and 4.3.9; then, taking the mag-

nitude of Eqs. 4.3.7, 4.3.8 and 4.3.9, gives the distance between the center of any ellipsoid
and the points we need on the surfaces. With this, we obtain new radii for both ellipsoids,
and then re-use the overlap formula

Oeff = Reff1 +Reff2 − |~x1 − ~x2|
Reff1 +Reff2 − |Reff1 −Reff2|

,

where Reffi are the effective radii of the ellipsoids in a certain orientation (the effective radii
can be seen in Fig. 4.3.5 as the bigger gray spheres rather than the smaller ones). Oeff is the
effective overlap between two ellipsoids.

Running the simulation Monte-Carlo simulation is then done to minimize this overlap.
The program starts by measuring the effective overlap. If the overlap value is more than the
allowed limit, it proposes new random Euler angles for the orientation, and re-measures the
effective overlap. If the new proposed overlap is lower than the previously measured value,
it is accepted. This process is iterated by a given number of tries for each grain; and the
process is iterated, also, for every cell for a given number too.
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4.3.2.3. Results of applying the overlap minimizer

The overlap minimization algorithm has succeeded in achieving its purpose, where applying
it lowers the porosity of the sample significantly. Fig. 4.3.7 is a comparison between two
decorations of the same deposition. The porosity of the one with random decoration is
0.273, where the one with the overlap minimizer has the porosity 0.218. The difference is,
obviously, significant.

Figure 4.3.7.: A comparison between two slides of the same sample with random decoration
(left) and decoration with overlap minimizing algorithm (right). We find that
the sample with minimized overlap has a lower porosity; i.e., success in lowering
the total overlap. In other words, less grains needed to achieve lower porosity,
which makes more sense for Bentheimer as we can see in Fig. 3.1.3.

4.4. Discretization
After decoration, we obtain data-files containing the positions of the grains, radii (of the
deposited spheres), their orientation Euler angles or quaternions and their crystallites (poly-
hedra) types’ identities of the polyhedra. This data has to be converted to a gray-scale image
for measurements like porosity, specific internal surface and local geometry measurements to
be accomplished.
The discretization algorithm is the one used in [31]. The discretization process is carried

out by subdividing the cubic sample into a grid of cubic voxels, each of side-length aµm.
Inside each voxel a set of n3 collocation points, i.e., an n× n× n cubic sublattice, is placed
symmetrically. The voxel is, then, assigned an integer m governed by the following rules:

• m = n3 if all the n3 collocation points fall inside the crystallites. This voxel represents
matrix.
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• m = 0 if all the n3 collocation points fall outside the crystallites. This voxel represents
pore space.

• 0 < m < n3 if m of the n3 collocation points fall inside the crystallites. This voxel
represents a combination of matrix and pore space.

The voxel label m, therefore, represents the density of the matrix volume in it. As a result,
the gray-scale grid representation can be called a synthetic µ-CT image of the sandstone
model at resolution aµm. Further, this image can be segmented by choosing a suitable
threshold mc. In such a binary representation, voxels with label 0 < m < mc are relabeled
to 0 (pore) and voxels with label mc ≤ m ≤ n3 are relabeled to 1 (matrix). The accuracy
of the synthetic µ-CT can be increased by increasing n, the number of collocation points in
each voxel.
The computational discretization procedure requires us to determine if a given collocation

point falls inside any of the deposited crystallites, i.e., if a point p falls inside Gi, i =
1, 2, . . . , N , where Gi is the crystallite at position ~xi.
For each crystallite Gi, i = 1, 2, . . . , N , with the origin of the coordinate axes coinciding

with xi, the orientation ~ai is defined by a sequence of three rotations of θ1, θ2 and θ3 about
the coordinate axes ~e1, ~e2 and ~e3 respectively, i.e.,

~ai = Q̂i3Q̂i2Q̂i1 = q̂i.

The polyhedra we created in Sec. 4.3, as we mentioned, consist of K planes that form a
closed object. The discretization procedure involves determining if a given point falls inside
any of the crystallites. A specific point ~p falls inside the crystallite Gi, i = 1, 2, . . . , N if

~nj ·
( 1
di

~p ′i − ~nj

)
< 0, j = 1, . . . , K,

where ~nj are the normal vectors (explained in 4.3.1) that specify Gi, ~p ′r = q−1
i (~p− ~xi)

(
q−1

i

)∗
and (·)∗ is the quaternion conjugation.
Fig. 4.4.1 shows the idea of going from spheres in pack (from deposition, Sec. 4.2) and

use the decoration data (data from Sec. 4.3) to get discretized polyhedra. We see that the
deposition spheres are circumscribed by the polyhedra.

Figure 4.4.1.: Decorating spheres with polyhedra in the discretization process. Spheres are
circumscribed by the polyhedra. Figure taken From [31].
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4.5. Conclusion
In this chapter, we presented three different methods for packing multiscale spheres. The best
method was the method of Molecular Dynamics, in terms of computational efforts. Then,
we turned into generating the right polyhedra for decoration of Bentheimer. The polyhedra
we created are generated randomly, and are characterized by the number of facets they have,
and their maximum elongation ratio. The Bentheimer sample has elongated polyhedra; the
issue that dragged a new problem into the field, as a consequence of using spheres deposition
algorithm and then decorating them by elongated polyhedra. The problem is that the overlap
of the grains is a function of their orientations, and as a consequence, the porosity could
change with different orientations. This problem did not exist formerly, because the previous
sample had almost isotropic polyhedra, in means of diameter lengths. For this problem,
we had to create what we called an “overlap minimization algorithm”. In this algorithm, a
Monte-Carlo simulation is run in order to minimize the overlap of each grain by re-orienting
it and re-measuring the overlap, which is an iterative process. Finally, we discussed how the
discretization process is done, which is the same algorithm used in [31, 3].
In the next chapter, we study the tend of the microstructure’s characteristics as functions

of the model building parameters we learned in this chapter.
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systematically

5.1. Parameter study
To determine the appropriate parameters for the reconstruction of the Bentheimer sample, the
model parameters were systematically analyzed. Their influence on the Minkowski functionals
and other microstructure’s characteristics is investigated, and the resulting models are visually
compared to the original sample on 2D cross sections.
In the comparison of measurements results, we concentrate on the Minkowski functionals

(porosity, specific surface, mean curvature and total curvature), local porosity distribution
and the two-point correlation function. Those choices were done according to the feasibility
of doing the measurement, since measuring some quantities, like local percolation probability,
is very costly and would take, prohibitively, long time.

Important note about the local porosity distribution

The number of measurements depend only on the size of the sample and on the measurement
cell size; consequently, the area under the local porosity distribution’s curve is, always, the
same for the same measurement cell and the same sample size. This is caused by the
algorithm used. In other words, we can reduce the curve’s shape description, or means of
comparison, down to two characteristics. First one is its sharpness (height of its peak),
and the second is its shift (peak’s value on the x axis). We are concerned only about the
sharpness, because the shift depends totally on the average porosity of the sample, if the
sample is homogeneous, which can controlled by other parameters easily (like the number of
spheres to be deposited in the deposition process).

5.1.1. Grain size distribution rescaling
As it is mentioned in Chapter 3, we had been provided a grain size distribution for Bentheimer.
The grain size distribution had to be rescaled in order to fit the polyhedra that we created,
since the grain size distribution has to be used for spheres deposition (Sec. 4.2), where the
polyhedra size is affected by the elongation process we mentioned formerly in Sec. 4.3.1.2. We
considered that the grain size distribution provides diameters for the spheres in the deposition
process; we, then, applied the rescale.
In the following we measured some geometrical characteristics for five models. In every

model the grain size distribution is rescaled. The models created by rescaling size distributions
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to 78%, 79%, 80%, 81% and 82%. Table 5.1 shows a comparison between Minkowski
functionals of those models, compared with the thresholded experimental sample using Otsu’s
method (labeled “Otsu” in the table) (Sec. 3.2.2). Fig. 5.1.1 is a plot for the table’s values.
Fig. 5.1.2 shows a comparison between the local porosity distribution of the models from

Table 5.1 and the Bentheimer that is thresholded by Otsu’s method (Sec. 3.2.2).

Otsu 78% (7b) 79% (7e) 80% (7a) 81% (7d) 82% (7c)
Porosity 0.21 0.21 0.205 0.19 0.19 0.18

Specific surface 17.38 13.43 13.14 12.64 12.38 11.95
Mean curvature 298 101 107 122 123 132
Total curvature -16154 -2415 -1936 -1607 -1369 -627

Table 5.1.: Comparison between five built models with different grain size distribution rescal-
ing. Minkowski functionals of the models are compared with the Bentheimer
sample thresholded with Otsu’s method (Sec. 3.2.2).
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Figure 5.1.1.: The effect of rescaling the size distribution upon the Minkowski functionals.
(A): effect on porosity. (B): effect on specific surface. (C): effect on mean
curvature. (D): effect on total curvature.

As it is intuitively expected for the porosity, the increase of the grain sizes decreases the
porosity noticeably. We see from Table 5.1 that different rescaling within the range 5% could
give a porosity change up to 4% in a semi-linear manner. Which means that controlling the
porosity through grain size distribution is not a difficult task and feasible. One has to be
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careful while doing this tweaking, since rescaling the grain size distribution does not only
affect the porosity, but also significantly the specific surface. The relative difference of the
specific surface within the chosen range of rescaling is 11%, which means that specific surface
is pretty sensitive to rescaling the grain sizes; therefore, one needs to study other parameters
to do this tweaking right. Surprisingly, and not as expected for the mean curvature and total
curvature from their characteristics found in Sec. 3.2.2 with different thresholds, they showed
monotonic behavior that gave us the possibility to control them up to some point.
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Figure 5.1.2.: Comparison of the local porosity distribution between the models of Table
5.1 with the Bentheimer sample thresholded by Otsu’s method (Sec. 3.2.2).
Measurement cell is a cube with side length 160 voxels. We see that rescaling
the size distribution does not have a monotone profile in affecting the height
of the curves, but only shifts them due to the change in porosity.

The local porosity distributions’ shapes, as we can see from Fig. 5.1.2, did not change
systematically in its sharpness, but only shifted systematically into the negative x direction
due to the decrease in porosity (for the definition of sharpness, refer to the introduction of
Sec. 5.1).
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Figure 5.1.3.: Correlation function of Bentheimer model upon rescaling the sizes of the grains.
Curves are colored and thin due to their closeness. For better understanding
of the difference, please refer to Fig. 5.1.4.
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Figure 5.1.4.: Correlation function of Bentheimer model upon rescaling the sizes of the grains;
the correlation function shown is zoomed at the region, where the difference
between the curves is greatest.

Figure 5.1.3 shows the correlation function of the models from Table 5.1 compared with
the Bentheimer sample thresholded by Otsu’s method (Sec. 3.2.2). Fig. 5.1.4 shows the same
data from Fig. 5.1.3, but zoomed into the region with the greatest difference between the
curves. We find that upon decreasing the rescale ratio for the grains, the correlation function
tends faster to zero, except the 78% measurement; which, peculiarly, lies between 79% and
80%. This can be obviously seen in Fig. 5.1.4, at the distance range between 100µm and
150µm.

5.1.2. Grain orientation ranges
Seven samples were created with different orientation ranges starting from 0 degrees (no
orientation), up to from −90 to 90 degrees [4, 3, 31]. In every model, the grains are allowed
to rotate three times from −θ to θ, where θ is any angle of the Euler angles. Table 5.2
shows a comparison between the Minkowski functionals of those models compared with the
thresholded sample labeled “Otsu” (Sec. 4.2). Fig. 5.1.5 is a plot for the table’s values.
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Otsu 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Porosity 0.21 0.187 0.190 0.198 0.207 0.213 0.216 0.214
Specific surface (mm−1) 17.38 13.23 13.36 13.56 13.72 13.84 13.87 13.76
Mean curvature (mm−1) 298 115 117 117.2 112.4 108 106.4 106.6
Total curvature (mm−1) -16154 -3541 -3419 -3027 -2783 -2600 -2937 -2947

Table 5.2.: Comparison between seven built samples with different orientation angles’ ranges.
Minkowski functionals of the models are compared with the Bentheimer sample
thresholded with Otsu’s method (Sec. 3.2.2).
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Figure 5.1.5.: The effect of changing the maximum allowed orientation angle upon the
Minkowski functionals. (A): effect upon porosity. (B): effect on specific sur-
face. (C): effect on mean curvature. (D): effect on total curvature.

We can see from Table 5.2 and Fig. 5.1.5 that limiting the orientation of the grains causes
a monotonic change up to some angle range, then the readings drop down after that angle
range. For porosity and specific surface this angle is 75◦. This result can be explained for
the porosity and specific surface by saying that the grains reach their maximum overlap at
this angle.
Fig. 5.1.6 shows a comparison between local porosity distributions for different allowed

orientations ranges for the grains. We find that changing this variable has no effect at all on
the sharpness of the curve for the local porosity distribution.
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Figure 5.1.6.: Local porosity distribution as a function of porosity. The figure is a comparison
between the local porosity distributions for different allowed angle orientations
for the grains. A: 0◦. B: 15◦. C: 30◦. D: 45◦. E: 60◦. F: 75◦. G: 90◦. Every
model’s plot was done in an independent frame due to the closeness of the
plots. If they were all put in one frame they would be indistinguishable.

We see from Fig. 5.1.6 that limiting the orientation angles does not affect the local porosity
distribution at all; it barely affects it due to the slight change in porosity; i.e., shifting it, but
not the sharpness of the curve (for sharpness definition, refer to the introduction of Sec. 5.1).
We conclude here that limiting orientation angles does not have a significant effect that

can be exploited to control the microstructure’s properties.

5.1.3. Grains overlap
Five different models were created with different maximum allowed overlap in deposition,
ranging from 0.1 to 0.3 (overlap explained in Sec. 4.2). Table 5.3 shows a comparison
between the Minkowski functionals of those models compared with the thresholded sample
labeled “Otsu”.
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Otsu 0.1 0.15 0.2 0.25 0.3
Porosity 0.21 0.193 0.195 0.217 0.229 0.236

Specific surface (mm−1) 17.38 13.53 13.21 13.08 12.76 12.15
Mean curvature (mm−1) 298 126.6 118.9 103.9 92.2 82.1
Total curvature (mm−1) -16154 -3003 -2402 -1550 -1194 -884

Table 5.3.: Comparison between five built models with different maximum overlap value.
Values of the maximum overlaps are shown in the first raw. Minkowski functionals
of the models are compared with the Bentheimer sample thresholded by Otsu’s
method (Sec. 3.2.2).

Fig. 5.1.7 shows the previous table’s plots.
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Figure 5.1.7.: The effect of changing the maximum allowed overlap in deposition upon the
Minkowski functionals. (A): effect upon porosity. (B): effect on specific sur-
face. (C): effect on mean curvature. (D): effect on total curvature.

We see from Table 5.3 and Fig. 5.1.7 that overlap limit has a significant effect on Minkowski
functionals, close to the effect we had of grain size distribution rescaling; more important,
it is a monotone that can be exploited by tweaking it for getting specific characteristics for
the model we want to build.
Fig. 5.1.8 shows a comparison between local porosity distributions for different maximum

overlaps. We find that decreasing the overlap makes the porosity distribution sharper (sharp-
ness definition could be found in the introduction of Sec. 5.1). This fact was a strong
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motivation for devising the idea of minimizing the overlap (Sec. 4.3.2). The overlap mini-
mization algorithm was done, because we wanted to get the sharpest possible local porosity
distribution curve to fit the Bentheimer sample that is thresholded by Otsu’s method.
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Figure 5.1.8.: Local porosity distribution as a function of porosity. The different curves rep-
resent the local porosity distribution for different maximum allowed overlap in
the deposition process. The overlap value in the legend denotes the maximum
allowed overlap in the deposition process.

5.1.4. Different decoration (different numbers of facets per
polyhedron)

Six models were created with different decorations in this part; the same packing was used
with different decorations. Each decoration is made up of grains that are polyhedra with
different number of polyhedron’s facets (discussed in Sec. 4.3.1). In the models created, we
change the number of facets starting from 36 facets for the first model up to 121 facets
for the last model. Table 5.2 shows Minkowski functionals measurements for the created
models.
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Otsu 36 49 64 81 100 121
Porosity 0.21 0.150 0.168 0.199 0.204 0.218 0.226

Specific surface (mm−1) 17.38 10.99 11.7 12.96 13.08 13.6 13.8
Mean curvature (mm−1) 298 143.3 132.8 112.7 108.3 97.8 90.85
Total curvature (mm−1) -16154 692 -471 -1745 -1939 -2597 -3155

Table 5.4.: Comparison between six built models with different numbers of facets per poly-
hedron. Minkowski functionals of the models are compared with the Bentheimer
sample thresholded with Otsu’s method (Sec. 3.2.2).

Fig. 5.1.9 shows plots for the data in Table 5.4.
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Figure 5.1.9.: The effect of changing the number of facets per polyhedron in decoration upon
the Minkowski functionals. (A): effect upon porosity. (B): effect on specific
surface. (C): effect on mean curvature. (D): effect on total curvature.

Another parameter with good monotonic effect on the Minkowski functionals. We see
from Table 5.4 and Fig. 5.1.9 that changing the number of facets of the polyhedra in the
model has almost a linear effect on Minkowski functionals. This indicates to the ability to
exploit this parameter to tweak Minkowski functionals’ values.
Fig. 5.1.6 shows a comparison between local porosity distributions for different decorations

according to the number of facets per polyhedron.
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Figure 5.1.10.: Local porosity distribution in different decorations, according to the number
of facets per polyhedron.

We see from Fig. 5.1.10 that increasing the number of facets does not change the sharpness
of the curve significantly, but only shifts it due to the reduction of the average grain volume;
i.e., the change in porosity (for sharpness definition, refer to the introduction of Sec. 5.1).
This shows that changing the number of facets is a good parameter for controlling

Minkowski functionals but not for local porosity distribution.

5.1.5. Different decorations (different elongation ratios for
polyhedra)

Five models were created with different decorations in this section. In each decoration, the
grains possess polyhedra with different maximum elongation ratios, starting from 0.2 maxi-
mum elongation ratio up to 1 (details on elongation mechanism was discussed in Sec. 4.3.1.2).
All polyhedra used in all models consist of 121 facets. The following table shows Minkowski
functionals measurements for the created samples.
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Otsu 0.2 0.4 0.6 0.8 1
Porosity 0.21 0.347605 0.311399 0.275495 0.239634 0.226107

Specific surface (mm−1) 17.38 17.1156 16.3308 15.4264 14.2611 13.8193
Mean curvature (mm−1) 298 -15.5866 18.9592 51.5261 81.1658 90.8505
Total curvature (mm−1) -16154 -5793.89 -5573.38 -4792.12 -3188.99 -3155.24

Table 5.5.: Comparison between five built models with different maximum allowed elongation
ratios per polyhedron. Minkowski functionals of the models are compared with
the Bentheimer sample thresholded with Otsu’s method (Sec. 3.2.2).

Fig. 5.1.11 shows the previous table’s plots.
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Figure 5.1.11.: The effect of changing the maximum elongation ratio of polyhedra upon the
Minkowski functionals. (A): effect upon porosity. (B): effect on specific
surface. (C): effect on mean curvature. (D): effect on total curvature.

From Table 5.5 and Fig. 5.1.11, we see that setting the maximum elongation ratio of the
polyhedra has a very strong effect on porosity and specific surface; stronger than everything
else we had so far. This does not mean we can deeply exploit this parameter, because this
will affect the visual appearance of the model. Controlling porosity with this parameter is a
bad move due to its high sensitivity to it, but for the specific surface it is good enough and
feasible.
Fig. 5.1.6 shows a comparison between local porosity distributions for different decorations,

according to the maximum elongation ratio of the polyhedra.
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5. Achieving the Bentheimer model systematically
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Figure 5.1.12.: Local porosity distribution for different decorations, i.e. maximum elongation
ratio.

From Fig. 5.1.12 that elongation does not effect the sharpness of the local porosity dis-
tribution curves (for sharpness definition, read the introduction of Sec. 5.1). It merely shifts
the curves due to the change in porosity which we find very high.

5.2. Conclusion
In this chapter, we investigated the tend of the microstructure characteristics as a function
of the parameters we used to build the model. We can see that there are many different
approaches and tweaks for reaching specific microstructure characteristics. The question
lies, eventually, in how we are going to collect the different parameters together to get
the model of Bentheimer we are looking for, not only qualitatively, but also quantitatively.
Table 5.6 summarizes the capability of every input parameter in controlling microstructure
characteristics.
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5. Achieving the Bentheimer model systematically

Size Orientation Overlap Facets Elongation
Porosity Yes No Yes Yes No

Specific surface Yes No Yes Yes Yes
Mean curvature Yes No Yes Yes Yes
Total curvature Yes No Yes Yes Yes

Local porosity distribution curve sharpness No No Yes No No

Table 5.6.: The column titles are the following. Size: Grain size distribution rescaling. Ori-
entation: Grain orientation limiting. Overlap: Grains overlap. Facets: Number
of facets per polyhedron. Elongation: Maximum elongation ratio of polyhedra.

With this information we systematically started building models for Bentheimer and tried
to match the experimental sample quantitatively and qualitatively. The next chapter discuss
the best model we achieved.
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6. Results and discussion

6.1. The best Bentheimer model
According to the information obtained in Chapter 5, we constructed a Bentheimer model
that could best fit our model qualitatively and quantitatively. Almost 80 models were built,
following the trend we had in the parameter study. The best choice was eventually narrowed
the following model. Table 6.1 shows the parameters used to build the model.
Fig. 6.1.1 shows a qualitative comparison between the Bentheimer model we built and the

µ-CT image thresholded by Otsu’s method.

Quantity name Quantity value
Sphere density in deposition 556 spheres/mm3

Maximum overlap 0.1
Provided size distribution rescale ratio 70%
Overlap minimized (OM) (Sec. 4.3.2) Yes

OM cell size 500µm3

OM iterations per grain 5
OM iterations per cell 3
Orientation range Not limited due to overlap minimizer

Number of facets per polyhedron 36
Facets maximum elongation ratio 0.4

Number of different polyhedra shapes in the model 512

Table 6.1.: The parameters used to build the Bentheimer model.
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6. Results and discussion

Figure 6.1.1.: Qualitative comparison between three random 2D slices from the synthetic
µ-CT images of Bentheimer (left), and three random 2D slices from the ex-
perimental µ-CT images thresholded by Otsu’s method (right). Details on
thresholding the Bentheimer µ-CT is found in Sec. 3.2.2.
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6. Results and discussion

6.1.1. Geometrical characterization of the model
6.1.1.1. Minkowski functional

Table 6.2 shows a comparison of the Minkowski functionals between the model we built for
Bentheimer and the Bentheimer sample thresholded by Otsu’s method (Sec. 3.2.2). As we
can see in Table 6.2, the porosity was achieved accurately, but the specific surface was almost
close to the lowest value we obtained by the different thresholds we applied on the Bentheimer
model. We can explain the high specific surface of the Bentheimer’s experimental sample
by the fact that thresholding the µ-CT image caused many undetermined regions to appear;
i.e., increased the number of spurts in the thresholded image, which in role causes relatively
more surface area than the expected value. The mean curvature and total curvature in Table
3.1 are not monotones and are not determined since they have a long range of fluctuations;
nevertheless, we got values for them in our model that are within the values we obtained
with maximum and minimum thresholds (can be seen as error bars).

Model Otsu Minimum value Maximum value
Porosity 0.21643 0.21468 0.17834 0.245018

Specific surface 15.6476 17.3802 15.7435 19.1452
Mean curvature 138.101 298.743 114.656 318.307
Total curvature -4194.72 -16154.4 -21554 9402.64

Table 6.2.: Comparison of Minkowski functionals between the model and the Bentheimer
sample thresholded by Otsu’s method. The last two columns are the minimum
and maximum of different thresholds from Table 3.1.

6.1.1.2. Local porosity distribution

The local porosity distribution was measured in the model for the same cell sizes used for the
Bentheimer sample (Sec. 3.2.2.3). Fig. 6.1.2 shows the local porosity distribution at different
measurement cells’ sizes. Comparing Fig. 3.2.8 and 6.1.2, we find that they strongly agree;
nevertheless, we find the strange double peak for the largest length-scale, which is a problem
of homogeneity, and cannot be fixed with the currently available technology; we used the
overlap minimizer to fix a part of the homogeneity problem.
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Figure 6.1.2.: Local porosity distribution of the Bentheimer model. The cells of measurement
are cubes with the side-length mentioned in the legend of the graph. We find
a peculiar peak at the cell size 384 voxels. This peak means that at this cell
size different porosity is found at different regions, which means the model has
a problem with homogeneity at this length scale. We believe that this problem
is due to the formation of clusters of highly packed grains in some regions that
lower the porosity. Such a problem cannot be solved using spheres deposition
algorithm, and needs a better technique for lowering the overlap for the grains
themselves.

The local porosity distribution of the model was compared with the Bentheimer µ-CT
images that are thresholded with Otsu’s method (details on thresholding in Sec. 3.2.2) for
better comparison. Fig. 6.1.3 shows this comparison.
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Figure 6.1.3.: Comparison between the local porosity distribution of the Bentheimer model
and the Bentheimer sample thresholded by Otsu’s method (Sec. 3.2.2). The
measurement cells are cubes with the following side-lengths. (A): 335.2µm
(96 voxels). (B): 592µm (160 voxels). (C): 947.2µm (256 voxels). (D)
1420.8µm (384 voxels).

6.1.1.3. Local percolation probabilities

The local percolation probabilities were measured for the model with the same cells’ sizes
we had for the experimental Bentheimer sample (Sec. 3.2.2). Fig. 6.1.4 shows the local
percolation probabilities for the Bentheimer model. Comparing 3.2.10 and 6.1.4, we find a
good agreement between them. A grid was inserted for better comparison.
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Figure 6.1.4.: Local percolation probability of the Bentheimer model different measurement
cell sizes. The measurement cell is a cube, the scales mentioned in the legend
are the side-length of the measurement cube.

Direct comparisons between the local percolation probabilities was done for few side-
lengths. Fig. 6.1.5 shows this comparison.
We see that local percolation probabilities match between the model and the sample quite

good at intermediate length scales. The difference found in the small length scales is due
to the insufficient image resolution problems of the experimental µ-CT images, where it is
difficult to match small (relative to the resolution) microstructure details due to the lack
of information. The slight mismatch in big length scales is a surprise and could not be
understood. Further investigation after larger length scales was, unfortunately, not possible
due to the lack of equipments and the very long time it needs if the current equipments are
used.
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Figure 6.1.5.: Comparison between the local percolation probabilities of the experimental
Bentheimer sample and the synthetic Bentheimer model with different mea-
surement cell sizes. The measurement cells are cubes and the following men-
tioned sizes are in means of their side-lengths. The cells sizes are 59.2µm (16
voxels) for (A). 133.2µm (36 voxels) for (B). 192.4µm (52 voxels) for (C).
266.4µm (72 voxels) for (D).

6.1.1.4. Fraction of percolating cells

Using the data from Sec. 6.1.1.3, we performed the calculation of the local fraction of perco-
lating cells. Confirming what is said in Sec. 6.1.1.3, we find that the best match is found in
intermediate length scales, and as we formerly have said, we could not do further investigation
due to the lack of equipments.
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Figure 6.1.6.: Local fraction of percolating cells for the Bentheimer sample thresholded by
Otsu’s method compared with the model we created for Bentheimer.

6.1.2. Transport properties of the model
Table 6.3 shows a comparison between the quantitative transport properties of Bentheimer
sample that is thresholded using Otsu’s method (details on thresholding is in Sec. 3.2.2)
and the model we have created. The transport properties were measured using a Lattice
Boltzmann simulation and Darcy’s law [34].

Attribute Value for sample Value for model
Average velocity in z-direction 1.34× 10−3 µm/s 1.26× 10−3 µm/s

Variance of velocity in z-direction 7.25× 10−6 µm/s 6.17× 10−6 µm/s

Min-Max velocity in z-direction [−3.43, 1.82]× 10−2 µm/s [−2.89, 1.49]× 10−2 µm/s

Dynamic viscosity 0.0264 kg/s·µm 0.0264 kg/s·µm

Global pressure gradient −4.31× 10−5 kg/s·µm2 −4.33× 10−5 kg/s·µm2

Permeability 3.074D 2.872D

Table 6.3.: Lattice Boltzmann simulation results for Bentheimer sample thresholded by Otsu’s
method.
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6. Results and discussion

6.2. Conclusion
Using the tend we learned in Chapter 5, we created a model for Bentheimer that matches
the real sample both qualitatively and quantitatively. The sample and the model matched
at a wide length scale range. The transport properties of the model and the sample agreed
up to some point after the agreement achieved in the microstructure’s characteristics. This
means that the microstructure’s characteristics describe the samples, we are using, very well.
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7. Conclusion and Outlook
This thesis discusses the characterization and modeling of a one-phase porous medium. The
main purpose to such analysis is the big trouble in storing and analyzing the experimental
µ-CT images.
The idea starts with defining a porous medium from a mathematical point of view. Then

defining the important physical quantities in a porous medium (porosity, specific surface, etc),
and the means to characterize different porous media’s micro-structure in different length
scales (local porosity theory).
The modeling process exempted us from using the pixel-wise imaging and reduced the

problem to storing objects with their attributes in the continuum. It, also, made obtain-
ing different synthetic µ-CT images relatively easy, rather than it being costly like it is in
experimental µ-CT.
One phase of the Bentheimer sandstone was modeled successfully ignoring other two

phases. They were ignored due to their very low volume fractions (<1%), and due to their
very weak effect on the microstructure’s properties. We used the Hoshen-Kopelman algorithm
to get the best segmentation possible for the phases of the experimental sample.
The standard modeling procedure did not suffice; an overlap minimization algorithm was

devised in order to solve the problem of having elongated objects decorating spheres. The
algorithm gave a more realistic scheme for the existence of packed anisotropic objects together
to have a homogeneous overlap, and lowered the number of objects needed to achieve a
certain porosity. The overlap minimization algorithm may be avoided in future modeling by
using an ellipsoids’ deposition algorithm rather than spheres.
We could achieve the model of Bentheimer by what we have learned in Chapter 5, where

we understood the tend of the microstructure’s characteristics as a function of the modeling
parameters.
The geometrical, and consequently, the physical transport characteristics of the model

and the original sample agree up to a very good level in a pretty wide length-scale range;
nevertheless, some characteristics were not achieved good enough, like the specific surface,
due to the poor quality of the µ-CT images available; i.e. lack of information.
A laboratory-size cubic model with side-length 2.4 cm was created, with the same param-

eters from Table 6.1. Creating bigger models is never a problem anymore with this modeling
procedure.
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A. Appendix

A.1. The Hoshen-Kopelman algorithm
The purpose of the Hoshen-Kopelman’s algorithm is labeling clusters on a binary grid. A
binary grid is a grid that contains only ones and zero. Fig. A.1.1 shows a 2D binary grid
where we will apply the Hoshen-Kopelman algorithm, as an example.
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Figure A.1.1.: A binary grid. We can see that it contains only the values ones and zeros, as
it is the case in a thresholded image.

The Hoshen-Kopelman algorithm is an algorithm that consists of a systematic scan for the
cells in a 2D grid. The scan goes, presumably, from top left, down to the bottom right of the
image. The algorithm checks every cell whether its value is 0 or 1. If the value of the current
cell is 0, the cell is skipped. Otherwise, the cell on the left and the cell above are checked for
their values. If one of these two neighboring cells has the value 1, we assign the current cell
the same label of the neighboring cell with the value 1. Otherwise, if both have the value 1,
a union operation is done to place the neighboring cells in one cluster. The pseudo-code in
Algorithm A.1 summarizes the Hoshen-Kopelman algorithm in its simplest form.
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A. Appendix

Algorithm A.1 A pseudo-code for the Hoshen-Kopelman algorithm. The algorithm is a little
bit modified than the original algorithm given in [26].

for(y from 0 to num_of_rows )
for(x from 0 to num_of_columns )
{

if( cell[x,y] == 1)
{

if(x == 0)
left = 0;

else
left = cell[x-1,y];

if(y == 0)
above = 0;

else
above = cell[x,y -1];

if(left == 1 && above == 1)
union (cell[x,y],cell[x-1,y],cell[x,y -1]);

else if(left == 1 && above == 0)
union (cell[x,y],cell[x-1,y]);

else if(left == 0 && above == 1)
union (cell[x,y],cell[x,y -1]);

else if(left == 0 && above == 0);
new_cluster (cell[x,y]);

}
}

Fig. A.1.2 shows the result of applying the Hoshen-Kopelman algorithm upon the grid
shown in Fig. A.1.1.
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Figure A.1.2.: The result of applying the Hoshen-Kopelman algorithm on the grid in
Fig. A.1.1. Contiguous clusters are labeled. Colors are there to make the
visual appearance more understandable.

The way we use the Hoshen-Kopelman algorithm is pretty different. We do not, actually,
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A. Appendix

care about the clusters’ labels; we care about the amount of cells they contain; therefore,
after applying the Hoshen-Kopelman algorithm, we do not save them as they look in A.1.2,
but save them, again, as a binary image. Into this binary image, we pass only the clusters
that contain an amount of cells greater than a specific amount k that we specify. We call k
the cluster-size threshold. For example, in Fig. A.1.2, if we define the cluster-size threshold
as k = 10, the result will be as it is shown in Fig. A.1.3. In Fig. A.1.3, we notice that every
cluster that contained a number of cells ≤ 10 is removed.
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Figure A.1.3.: This figure represents Fig. A.1.2 after applying cluster-size threshold k = 10.
We see that all clusters in Fig. A.1.2 that contain ≤ 10 cells are removed.

Since our sample is 3D, a 3D Hoshen-Kopelman algorithm was used. Three directions
(x, y, z) were checked around every cell, rather than two as it is in the standard Hoshen-
Kopelman algorithm; i.e., in addition to the cells to the left and above, we check, also, the
cell that has the same coordinates of the current cell but in the previous image slice. We,
also, changed the standard algorithm by defining what we have called a sliding-window to
ensure that long connected rims would not be taken as clusters. Sliding window means that
we define an integer number n, that we call window size, that specifies how many image
slices to apply the Hoshen-Kopelman algorithm upon, before flushing the cluster information
and starting over with the next n image slices, where the next window of image slices differ
by the previous one by shifting the previous set of image slices by 1 (Fig. A.1.4). For example,
for n = 5 (as was chosen for the sample), if the process starts with image slice number 0,
the set of image slices to apply the Hoshen-Kopelman algorithm upon are

0 → 4
1 → 5
2 → 6
3 → 7
... ... ....

Why do we do this? In the first place, the purpose of applying the Hoshen-Kopelman
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algorithm is separating the fillings from the rims of the normal grains (Sec. 3.2.2). If we
apply the algorithm on the whole set of image slices, the rims may form connected clusters
along the whole set of image slices, and their sizes (cluster sizes caused by contiguous rims
cells) would be comparable to the size of the fillings. To avoid this happening, we use the
concept of a sliding window, and reset the cluster label information after every n image slices,
where the fillings could form clusters containing cells greater than the cluster-size threshold,
but the connected rims’ cells could not. Fig. A.1.4 shows the concept of a applying a sliding
window on the Hoshen-Kopelman algorithm upon the image slices labeled with the numbers.
In Fig. A.1.4, (A), we see 10 image slices that we want to apply the 3D Hoshen-Kopelman
algorithm upon. (B) shows the Hoshen-Kopelman algorithm being applied with a sliding
window, the window size is n = 5. After applying the Hoshen-Kopelman algorithm on the
first five image slices, we save the result into binary image slices, and move to the next step
(C) and continue saving the output into the same binary image slices, but add a new slice in
every step, since there are n− 1 common image slices between every two subsequent steps.
The output binary image slices keep growing at every step by “1” (except the first step,
where it saves the whole window size). To solve the conflict problem between the common
image slices (already saved ones and the ones to be saved), the results of every step, that we
get using a sliding window, are saved to the output image slices using an OR gate. Meaning,
that the pixels that have the value 1 always overwrite the pixels in the saved binary image
slices.

1 2 3 4 5 6 7 8 9(A)

1 2 3 4 5 6 7 8 9(B)

1 2 3 4 5 6 7 8 9(C)

1 2 3 4 5 6 7 8 9(D)

Figure A.1.4.: The concept of a “sliding window”. (A): Ten 2D image slices that we want to
apply the 3D Hoshen-Kopelman algorithm upon. (B): Starting the Hoshen-
Kopelman algorithm with a sliding window, the size of the window is n = 5
(the window is represented by the gray rectangle). After applying the Hoshen-
Kopelman algorithm on the first five image slices, we save the result into
binary image slices, and move to the next step (C). (C): The second step in
a sliding window algorithm. We see that the window has shifted by a single
image slice. The process continues after (C) by (D) and (E), etc. The results
of every step, that we get using a sliding window, are saved to the output file
using an OR gate; meaning, that pixels that have the value 1 always overwrite
the pixels in the saved binary image slices.
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